15–210: Parallel and Sequential Data Structures and Algorithms

Practice Exam II (Solutions)
April 2014

• There are 16 pages in this examination, comprising 7 questions worth a total of 120 points. The last few pages are an appendix with costs of sequence, set and table operations.

• You have 80 minutes to complete this examination.

• Please answer all questions in the space provided with the question. Clearly indicate your answers.

• You may refer to your one double-sided 8\(\frac{1}{2}\) x 11 in sheet of paper with notes, but to no other person or source, during the examination.

• Your answers for this exam must be written in blue or black ink.

Circle the section YOU ATTEND

<table>
<thead>
<tr>
<th>Sections</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 9:30am - 10:20am Naman</td>
</tr>
<tr>
<td>B 10:30am - 11:20am Sam</td>
</tr>
<tr>
<td>C 12:30pm - 1:20pm Isaac</td>
</tr>
<tr>
<td>D 12:30pm - 1:20pm Nikki</td>
</tr>
<tr>
<td>E 1:30pm - 2:20pm Esther and Ronald</td>
</tr>
<tr>
<td>F 1:30pm - 2:20pm Ivan</td>
</tr>
<tr>
<td>G 3:30pm - 4:20pm Will and Ian</td>
</tr>
<tr>
<td>Question</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Minimum Spanning Trees</td>
</tr>
<tr>
<td>Graphs</td>
</tr>
<tr>
<td>Short Answers</td>
</tr>
<tr>
<td>Set Operations</td>
</tr>
<tr>
<td>Strongly Connected Components</td>
</tr>
<tr>
<td>MST and Tree Contraction</td>
</tr>
<tr>
<td>Treaps</td>
</tr>
<tr>
<td>Total:</td>
</tr>
</tbody>
</table>
Question 1: Minimum Spanning Trees (10 points)

Suppose that you are given a graph $G = (V, E)$ and a its minimum spanning tree T. Suppose that we delete from G, one of the edges $(u, v) \in T$ and let G' denote this new graph.

(a) (3 points) Is G' guaranteed to have a minimum spanning tree?

Solution: No, the graph can become disconnected.

(b) (3 points) Assuming that G' has a minimum spanning tree T'. TRUE or FALSE: the number of edges in T' is no greater than the number of edges in T? Explain your answer in one sentence.

Solution: TRUE. A spanning tree always has $|V| - 1$ edges.

(c) (4 points) Assuming that G' has a minimum spanning tree T', describe an algorithm for finding T'. What is the work of your algorithm?

Solution: At each iteration, find the minimum weight edge that connects the two disconnected components. $O(m \log n)$.
Question 2: Graphs (15 points)

(a) (6 points) Consider the graph shown below, where the edge weights appear next to the edges and the heuristic distances to vertex G are in parenthesis next to the vertices.

i. Show the order in which vertices are visited by Dijkstra when the source vertex is A.

Solution: A C B E F D G

ii. Show an order in which vertices are visited by A^* when the source vertex is A and the destination vertex is G.

Solution: A C F G

(b) (4 points) What is the key reason you would choose to use A^* instead of Dijkstra’s algorithm?

Solution: You can use A^* if you want the shortest path to only a single goal vertex, and not all shortest paths. A^* can be much more efficient, as it tries to move toward the goal more directly, skipping many more vertices.

(c) (5 points) Show a 3-vertex example of a graph on which Dijkstra’s algorithm always fails. Please clearly identify which vertex is the source.

Solution:

```
A
/ \  
x=4  y=-2  x+y < z < x guarantees failure
/   
\    
x+y < z <= x may fail depending on the input order
S ------- B
  z=3
```
Question 3: Short Answers (20 points)

Please answer the following questions each with a few sentences, or a short snippet of code (either pseudocode or SML).

(a) (5 points) Consider an undirected graph G with unique positive weights. Suppose it has a minimum spanning tree T. If we square all the edge weights and compute the MST again, do we still get the same tree structure? Explain briefly.

Solution: Yes we get the same tree. The minimum spanning tree only depends on the ordering among the edges. This is because the only thing we do with edges is compare them.

(b) (5 points) A new startup *FastRoute* wants to route information along a path in a communication network, represented as a graph. Each vertex represents a router and each edge a wire between routers. The wires are weighted by the maximum bandwidth they can support. *FastRoute* comes to you and asks you to develop an algorithm to find the path with maximum bandwidth from any source s to any destination t. As you would expect, the bandwidth of a path is the minimum of the bandwidths of the edges on that path; the minimum edge is the bottleneck.

Explain how to modify Dijkstra’s algorithm to do this. In particular, how would you change the priority queue and the following relax step?

```sml
fun relax (Q, (u,v,w)) = PQ.insert (d(u) + w, v) Q
```

Justify your answer.

Solution: We’ll use a max priority queue instead of a min priority queue used in Dijkstra’s. We will also modify the relax step to insert into the priority queue $\min(d(u), w)$ because the quality of a path is the minimum of the edge weights. These changes don’t affect the correctness of Dijkstra’s, so we could explore the vertices like in Dijkstra’s.
(c) (5 points) Given a graph with integer edge weights between 1 and 5 (inclusive), you want to find the shortest weighted path between a pair of vertices. How would you reduce this problem to the shortest unweighted path problem, which can be solved using BFS?

Solution: Replace each edge with weight \(i \) with a simple path of \(i \) edges each with weight 1. Then solve with BFS.

(d) (5 points) Recall the implementation of DFS shown in class using the `enter` and `exit` functions. Circle the correct answer for each of the following statements, assuming DFS starts at \(A \):

- `enter D` could be called before `enter E`: True False
- `enter E` could be called before `enter D`: True False
- `enter D` could be called before `enter C`: True False
- `exit A` could be called before `exit B`: True False
- `exit D` could be called before `enter B`: True False

Solution: True, True, True, False, True
Question 4: Set Operations (15 points)
We can represent ordered sets of integers using binary search trees using the type:

```plaintext
datatype bst = Leaf | Node of (bst * bst * int)
```

This datatype is paired with the functions:

```plaintext
val split : (bst * int) -> bst * bool * bst
val join : (bst * int option * bst) -> bst
```

where `split(T,k)` returns a pair of trees from `T` (less than and greater than `k`), and a flag indicating if `k` is in `T`.

Joe Twoten noticed that the course staff kept writing almost the same code to implement set union, set intersection and set difference. He decided a more elegant solution would be to use higher order functions and just write the bulk of the code once. Typical of Joe, he only typed in part of the solution and left the rest up to you.

(a) (6 points) Consider a function

```plaintext
val combine : (bool * (int * bool -> int option)) -> (bst * bst) -> bst
```

where

- `combine (true,f) (Leaf,T2)` evaluates to `T2`
- `combine (false,f) (Leaf,T2)` evaluates to `Leaf`
- `combine (b,f) (T1,T2)` evaluates to a `bst` where every key `k` that appears in `T1` is replaced by the result of applying `f` to `k` and a boolean indicating whether `k` appears in `T2`. Every key that appears only in `T2` is handled as specified by `b` in the base case.

Most of the implementation of `combine` is provided below. Finish it by filling in the blanks.

```plaintext
fun combine (keep : bool, f : int * bool -> int option)
  (T1: bst, T2: bst) : bst =
  case (T1, keep) of
  (Leaf, true) => T2
  | (Leaf, false) =>
  | (Node(L1,R1,k1), _) =>
    let
      val (L2, exists, R2) = split (T2, k1)
    in
      join (combine (keep, f) (L1, L2), f(k1, exists),
      combine (keep, f) (R1, R2))
```
(b) (6 points) We can use combine to implement the various set operations by making one call with carefully chosen arguments. For example,

\[
\text{val union = combine (true,(fn (k,_) => SOME k)}
\]

You may assume that combine works correctly, even if you did not implement it.

i. Implement set intersection with exactly one call to combine.

\[
\text{val inter = combine (false,(fn (k, true) => SOME k)
| (k, false) => NONE)}
\]

ii. Implement set difference with exactly one call to combine.

\[
\text{val diff = combine (false,(fn (k, true) => NONE
| (k, false) => SOME(k))}
\]

iii. Implement symmetric set difference with exactly one call to combine. Recall that the symmetric difference of sets \(A\) and \(B\) is

\[
A \Delta B := \{x : x \in A \oplus x \in B\}
\]

where \(\oplus\) is exclusive or.

\[
\text{val symdiff = combine (true,(fn (k, true) => NONE
| (k, false) => SOME(k))}
\]

(c) (3 points) We could also implement symdiff as

\[
\text{fun symdiff (A,B) = diff(union(A,B), inter(A,B))}
\]

Give one reason (other than code reuse) that would make the implementation written with combine preferable.

\textbf{Solution:} Using combine would require passing over the trees just once instead of three times. It would therefore presumably be cheaper by an constant amount.
Question 5: Strongly Connected Components (20 points)

In this question, you will write 2 functions on directed graphs. We assume that graphs are represented as:

\[
\text{type graph = vertexSet vertexTable}
\]

with key comparisons taking \(O(1)\) work.

(a) (10 points) Given a directed graph \(G = (V, E)\), its transpose \(G^T\) is another directed graph on the same vertices, with every edge flipped. More formally, \(G^T = (V, E')\), where

\[
E' = \{(b, a) \mid (a, b) \in E\}.
\]

Here is a skeleton of an SML definition for \texttt{transpose} that computes the transpose of a graph. Fill in the blanks to complete the implementation. Your implementation must have \(O(|E| \log |V|)\) work and \(O(\log^2 |V|)\) span.

\[
\begin{align*}
\text{fun transpose (G : graph) : graph =} \\
\text{let} \\
\text{val S = vertexTable.toSeq(G) (* returns (vertex*vertexSet) seq *)} \\
\text{fun flip(u,nbrs) = Seq.map (fn v => (v,u)) (vertexSet.toSeq nbrs)} \\
\text{val ET = Seq.flatten(Seq.map flip S)} \\
\text{val T = vertexTable._collect_ET} \\
\text{in} \\
\text{vertexTable.map _vertexSet.fromSeq_ T} \\
\text{end}
\end{align*}
\]

(b) (10 points) A strongly connected component of a directed graph \(G = (V, E) \) is a subset \(S \) of \(V \) such that every vertex \(u \in S \) can reach every other vertex \(v \in S \) (i.e., there is a directed path from \(u \) to \(v \)), and such that no other vertex in \(V \) can be added to \(S \) without violating this condition. Every vertex belongs to exactly one strongly connected component in a graph.

Implement the function:

\[
\text{val scc : graph * vertex -> vertexSet}
\]

such that \(\text{scc}(G,v) \) returns the strongly connected component containing \(v \). You may assume the existence of a function:

\[
\text{val reachable : graph * vertex -> vertexSet}
\]

such that \(\text{reachable}(G,v) \) returns all the vertices reachable from \(v \) in \(G \). Not including the cost of \(\text{reachable} \), your algorithm must have \(O(|E| \log |V|) \) work and \(O(\log^2 |V|) \) span. You might find \(\text{transpose} \) useful and can assume the given time bounds.

\[
\text{fun scc (G : graph, v : vertex) : vertexSet} = \\
\text{vertexSet.intersection(reachable(G,v),} \\
\text{reachable(transpose(G,v)))}
\]
Question 6: MST and Tree Contraction
(25 points)

In *SegmentLab*, you implemented Borůvka’s algorithm that interleaved star contractions and finding minimum weight edges. In this questions you will analyze Borůvka’s algorithm more carefully.

We’ll assume throughout this problem that the edges are undirected, and each edge is labeled with a unique identifier (ℓ). The weights of the edges do not need to be unique, and $m = |E|$ and $n = |V|$.

% returns the set of edges in the minimum spanning tree of G

```plaintext
function MST($G = (V, E)$) =
  if $|E| = 0$ then {} else let
    val $F = \{\text{min weight edge incident on } v : v \in V\}$
    val ($V'$, $P$) = contract each tree in the forest $(V, F)$ to a single vertex
    $V' = \text{remaining vertices}$
    $P = \text{mapping from each } v \in V \text{ to its representative in } V'$
    val $E' = \{(P_u, P_v, \ell) : (u, v, \ell) \in E \mid P_u \neq P_v\}$
  in
    MST($G' = (V', E')$) $\cup \{\ell : (u, v, \ell) \in F\}$
end
```

(a) (4 points) Show an example graph with 4 vertices in which F will not include all the edges of the MST.

Solution:

```
3
  o --- o
1 | | 2
  o --- o
```

(b) (4 points) Prove that the set of edges F must be a forest (i.e. F has no cycle).

Solution: Answer 1: The MST does not have a cycle (it is a tree) and F is a subset of F so it can’t have a cycle.

Answer 2: AFSOC that there is a cycle. Consider the maximum weight edge on the cycle. Neither of its endpoints will choose it since they both have lighter edges. Contradiction.
(c) (4 points) Suggest a technique to efficiently contract the forest in parallel. What is a tight asymptotic bound for the work and span of your contract, in terms of n? Explain briefly. Are these bounds worst case or expected case?

Solution: Use star contraction as described in class. Since in contraction a tree will always stay a tree, the number of edges must go down with the number of vertices. Therefore total work will be $O(n)$ and span will be $O(\log^2 n)$ in expectation.

(d) (4 points) Argue that each recursive call to MST removes, in the worst case, at least half of the vertices; that is, $|V'| \leq \frac{|V|}{2}$.

Solution: Every vertex will join at least one other vertex. Since edges have two directions, at least $n/2$ of them must be selected, which will remove at least $n/2$ vertices ($n = |V|$).

(e) (4 points) What is the maximum number of edges that could remain after one step (i.e. what is $|E'|$)? Explain briefly.

Solution: $m - n/2$ since at least $n/2$ edges are removed, as described in previous answer.

(f) (5 points) What is the expected work and span of the overall algorithm in terms of m and n? Explain briefly. You can assume that calculating F takes $O(m)$ work and $O(\log n)$ span.

Solution: Since vertices go down by at least a factor of $1/2$ on each round, there will be at most $\log n$ rounds. The cost of each round is dominated by calculating F, $O(m)$ work and $O(\log n)$ span and the contraction of forests $O(n)$ work and $O(\log^2 n)$ span. Multiplying the max of each of these by $\log n$ gives $O(m \log n)$ work and $O(\log^3 n)$ span.
Question 7: Treaps (15 points)

(a) (5 points) Assume that priorities are generated using a random hash function $h : \text{keys} \rightarrow [0, 1]$. For keys 1, 2, 3, 4, 5, assume the corresponding hash values are as follows.

<table>
<thead>
<tr>
<th>key</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>$h(\text{key})$</td>
<td>0.4</td>
<td>0.1</td>
<td>0.5</td>
<td>0.2</td>
<td>0.6</td>
</tr>
</tbody>
</table>

What would the Treap look like if we insert the keys 1, 4, 2, 5, 3 in this order?

Solution: Assuming a max heap (maximum priority at root):

```
      5
     / \
    3   
   /    \
  1 4   \
    /    \
   2
```

(b) (5 points) In our analysis of the expected depth of a key in a Treap, we made use of the following indicator random variable:

$$A^j_i = \begin{cases}
1, & j \text{ is an ancestor of } i \\
0, & \text{otherwise}
\end{cases}$$

Write an expression for S_i, the size of a subtree rooted at key i, in terms of A^j_i.

Solution: $S_i = \sum_{j=1}^{n} A^j_i$

(c) (5 points) Derive a closed-form expression for $E[S_i]$. You may use $\ln n$, H_n, or $n!$ in your expression.

Solution:

$$E[S_i] = \sum_{j=1}^{n} 1/((|j-i| + 1)$$

$$= H_i + H_{n-i+1} - 1$$

$$= O(\log n)$$
Appendix: Library Functions

signature SEQUENCE =

sig
 type 'a seq
 type 'a ord = 'a * 'a -> order
 datatype 'a listview = NIL | CONS of 'a * 'a seq
 datatype 'a treeview = EMPTY | ELT of 'a | NODE of 'a seq * 'a seq

exception Range
exception Size

val nth : 'a seq -> int -> 'a
val length : 'a seq -> int
val toList : 'a seq -> 'a list
val toString : ('a -> string) -> 'a seq -> string
val equal : ('a * 'a -> bool) -> 'a seq * 'a seq -> bool

val empty : unit -> 'a seq
val singleton : 'a -> 'a seq
val tabulate : (int -> 'a) -> int -> 'a seq
val fromList : 'a list -> 'a seq

val rev : 'a seq -> 'a seq
val append : 'a seq * 'a seq -> 'a seq
val flatten : 'a seq seq -> 'a seq

val filter : ('a -> bool) -> 'a seq -> 'a seq
val map : ('a -> 'b) -> 'a seq -> 'b seq
val map2 : ('a * 'b -> 'c) -> 'a seq -> 'b seq -> 'c seq
val zip : 'a seq -> 'b seq -> ('a * 'b) seq

val enum : 'a seq -> (int * 'a) seq
val inject : (int * 'a) seq -> 'a seq

val subseq : 'a seq -> int * int -> 'a seq
val take : 'a seq * int -> 'a seq
val drop : 'a seq * int -> 'a seq
val showl : 'a seq -> 'a listview
val showt : 'a seq -> 'a treeview

val iter : ('b * 'a -> 'b) -> 'b -> 'a seq -> 'b
val iterm : ('b * 'a -> 'b) -> 'b -> 'a listview -> 'b
val reduce : ('a * 'a -> 'a) -> 'a -> 'a seq -> 'a
val scan : ('a * 'a -> 'a) -> 'a -> 'a seq -> 'a seq
val scanl : ('a * 'a -> 'a) -> 'a -> 'a seq -> 'a

val sort : 'a ord -> 'a seq -> 'a seq
val merge : 'a ord -> 'a seq -> 'a seq
val collect : 'a ord -> ('a * 'b) seq -> ('a * 'b seq) seq
val collate : 'a ord -> 'a seq ord

end
<table>
<thead>
<tr>
<th>ArraySequence</th>
<th>Work</th>
<th>Span</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>empty ()</code></td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td><code>singleton a</code></td>
<td>$O(n)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td><code>length s</code></td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td><code>nth s i</code></td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td><code>tabulate f n</code></td>
<td>$O\left(\sum_{i=0}^{n-1} W_i\right)$</td>
<td>$O\left(\max_{i=0}^{n-1} S_i\right)$</td>
</tr>
<tr>
<td><code>map f s</code></td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td><code>map2 f s t</code></td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td><code>reduce f b s</code></td>
<td>$O(n)$</td>
<td>$O(\lg n)$</td>
</tr>
<tr>
<td><code>scan f b s</code></td>
<td>$O(n)$</td>
<td>$O(\lg n)$</td>
</tr>
<tr>
<td><code>filter p s</code></td>
<td>$O(n)$</td>
<td>$O(\lg n)$</td>
</tr>
<tr>
<td><code>showt s</code></td>
<td>$O(n)$</td>
<td>$O(\lg n)$</td>
</tr>
<tr>
<td><code>hidet tv</code></td>
<td>$O(n)$</td>
<td>$O(\lg n)$</td>
</tr>
<tr>
<td><code>sort cmp s</code></td>
<td>$O(n \lg n)$</td>
<td>$O(\lg^2 n)$</td>
</tr>
<tr>
<td><code>merge cmp s t</code></td>
<td>$O(n \lg n)$</td>
<td>$O(\lg (m + n))$</td>
</tr>
<tr>
<td><code>flatten s</code></td>
<td>$O(n \lg n)$</td>
<td>$O(\lg^2 n)$</td>
</tr>
<tr>
<td><code>append (s,t)</code></td>
<td>$O(n \lg n)$</td>
<td>$O(\lg (m + n))$</td>
</tr>
<tr>
<td>Notes:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Table/Set Operations</td>
<td>Work</td>
<td>Span</td>
</tr>
<tr>
<td>----------------------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>size(T)</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>singleton(k,v)</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>filter $f T$</td>
<td>$O\left(\sum_{(k,v)\in T}W(f(v))\right)$</td>
<td>$O\left(\lg</td>
</tr>
<tr>
<td>map $f T$</td>
<td>$O\left(\sum_{(k,v)\in T}W(f(v))\right)$</td>
<td>$O\left(\max_{(k,v)\in T}S(f(v))\right)$</td>
</tr>
<tr>
<td>tabulate $f S$</td>
<td>$O\left(\sum_{k\in S}W(f(k))\right)$</td>
<td>$O\left(\max_{k\in S}S(f(k))\right)$</td>
</tr>
<tr>
<td>find T k</td>
<td>$O(\lg</td>
<td>T</td>
</tr>
<tr>
<td>insert $f (k,v)$ T</td>
<td>$O(\lg</td>
<td>T</td>
</tr>
<tr>
<td>delete k T</td>
<td>$O(\lg</td>
<td>T</td>
</tr>
<tr>
<td>extract (T_1,T_2)</td>
<td>$O(m\lg(\frac{n+m}{m}))$</td>
<td>$O(\lg(n+m))$</td>
</tr>
<tr>
<td>merge $f T_1$ T_2</td>
<td>$O(m\lg(\frac{n+m}{m}))$</td>
<td>$O(\lg(n+m))$</td>
</tr>
<tr>
<td>erase (T_1,T_2)</td>
<td>$O(m\lg(\frac{n+m}{m}))$</td>
<td>$O(\lg(n+m))$</td>
</tr>
<tr>
<td>domain T</td>
<td>$O(</td>
<td>T</td>
</tr>
<tr>
<td>range T</td>
<td>$O(</td>
<td>T</td>
</tr>
<tr>
<td>toSeq T</td>
<td>$O(</td>
<td>T</td>
</tr>
<tr>
<td>collect S</td>
<td>$O(</td>
<td>S</td>
</tr>
<tr>
<td>fromSeq S</td>
<td>$O(</td>
<td>S</td>
</tr>
<tr>
<td>intersection (S_1,S_2)</td>
<td>$O(m\lg(\frac{n+m}{m}))$</td>
<td>$O(\lg(n+m))$</td>
</tr>
<tr>
<td>union (S_1,S_2)</td>
<td>$O(m\lg(\frac{n+m}{m}))$</td>
<td>$O(\lg(n+m))$</td>
</tr>
<tr>
<td>difference (S_1,S_2)</td>
<td>$O(m\lg(\frac{n+m}{m}))$</td>
<td>$O(\lg(n+m))$</td>
</tr>
</tbody>
</table>

where $n = \max(|T_1|,|T_2|)$ and $m = \min(|T_1|,|T_2|)$. For **reduce** you can assume the cost is the same as **Seq.reduce f init (range(T))**. In particular **Seq.reduce** defines a balanced tree over the sequence, and **Table.reduce** will also use a balanced tree. For **merge** and **insert** the bounds assume the merging function has constant work.