• There are 13 pages in this examination, comprising 8 questions worth a total of 125 points. The last 2 pages are an appendix with costs of sequence, set and table operations.

• You have 80 minutes to complete this examination.

• Please answer all questions in the space provided with the question. Clearly indicate your answers.

• You may refer to your one double-sided $8\frac{1}{2} \times 11$ in sheet of paper with notes, but to no other person or source, during the examination.

• Your answers for this exam must be written in blue or black ink.

Full Name:
Andrew ID:
Section:

<table>
<thead>
<tr>
<th>Question</th>
<th>Points</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recurrences</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Short Answers</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Missing Element</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Interval Containment</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Quicksort</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Maximum Elements</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Higher Order Costs</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Parentheses Revisited</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Total:</td>
<td>125</td>
<td></td>
</tr>
</tbody>
</table>
Question 1: Recurrences (16 points)
Recall that $f(n)$ is $\Theta(g(n))$ if $f(n) \in O(g(n))$ and $g(n) \in O(f(n))$. Give a closed-form solution in terms of Θ for the following recurrences. Also, state whether the recurrence is dominated at the root, the leaves, or equally at all levels of the recurrence tree.

You do not have to show your work, but it might help you get partial credit.

(a) (4 points) $f(n) = 5f(n/5) + \Theta(n)$

(b) (4 points) $f(n) = 3f(n/2) + \Theta(n^2)$

(c) (4 points) $f(n) = f(n/2) + \Theta(lg n)$

(d) (4 points) $f(n) = 5f(n/8) + \Theta(n^{2/3})$
Question 2: Short Answers (18 points)

(a) (5 points) Assume you are given an associative function \(f(a, b) : \text{int seq} \times \text{int seq} \rightarrow \text{int seq} \) which takes two sequences of length \(n_1 \) and \(n_2 \) returning a sequence of length \(n_1 + n_2 \). It does \(O((n_1 + n_2)^2) \) work and \(O(\log(n_1 + n_2)) \) span. What is the work and span of the following function?

\[
\text{fun foo}(S : \text{int seq}) = \\
\quad \text{Seq.reduce } f \text{ Seq.empty } (\text{Seq.map Seq.singleton } S)
\]

(b) (5 points) Implement \texttt{reduce} using contraction. You can assume the input length is a power of 2.
(c) **Guessing Games** I am thinking of a random non-negative integer, X. Of course, I can’t mean *uniformly* random, as that would mean that at least half the time I’m thinking of an infinite integer! As it turns out, the expected value of positive integers I think of is 1000.

i. (4 points) For some reason, I like to choose 15210 a lot. What’s the maximum probability which which I can choose $X = 15210$ (while still obeying the condition $E[X] = 100$)?

ii. (4 points) I’ve modified my preferences in random numbers such that I generally choose numbers close to 1000; the variance of X is 20. So, it’s still true that $E[X] = 1000$, but now also $\text{Var}(X) = E[(X - E[X])^2] = 20$. What’s the maximum probability which which I can choose $X = 15210$ now?
Question 3: Missing Element (12 points)

For 15210, there is a roster of \(n \) unique Andrew ID’s, each a string of at most 9 characters long (so \texttt{String.compare} costs \(O(1) \)).

In this problem, the roster is given as a sorted string sequence \(R \) of length \(n \). Additionally, you are given another sequence \(S \) of \(n - 1 \) unique ID’s from \(R \). The sequence \(S \) is not necessarily sorted. Your task is to design and code a divide-and-conquer algorithm to find the missing ID.

(a) (7 points) Write an algorithm in SML that has \(O(n) \) work and \(O(\log^2 n) \) span.

\[
(* \textbf{Invariant: } |R| = |S|+1 *)
\]

\[
\text{fun missing_elt (R: string seq, S: string seq) : string =}
\]

\[
\text{let fun lessThan a b = (String.compare(b, a)=LESS) (* is } b<a)*\)
\]

\[
in \text{ case (length R)}
\]

\[
of 0 => \text{raise Fail "should not get here"}
\]

\[
| 1 =>
\]

\[
| n => (* \textbf{recursive step } *)
\]

\[
\text{let val p = ________________________________}
\]

\[
\text{val Sleft = filter (lessThan p) S}
\]

\[
\text{val Sright = filter (not o (lessThan p)) S}
\]

\[
\text{val Rleft = ________________________________}
\]

\[
\text{val Rright = ________________________________}
\]

\[
in ________________________________
\]

\[

\]

\[

\]

\[
\text{end}
\]

\[
\text{end}
\]

(b) (5 points) Give a brief justification of why your algorithm meets the cost bounds.
Question 4: Interval Containment (13 points)
An interval is a pair of integers \((a, b)\). An interval \((a, b)\) is contained in another interval \((\alpha, \beta)\) if \(\alpha < a\) and \(b < \beta\). In this problem, you will design an algorithm

\[
\text{count: } (\text{int} \times \text{int}) \text{ seq} \rightarrow \text{int}
\]

which takes a sequence of intervals (i.e., ordered pairs) \((a_0, b_0), (a_1, b_1), \ldots, (a_{n-1}, b_{n-1})\) and computes the number of intervals that are contained in some other interval. If an interval is contained in multiple intervals, it is counted only once.

For example, \(\text{count } \langle(0, 6), (1, 2), (3, 5)\rangle = 2\) and \(\text{count } \langle(1, 5), (2, 7), (3, 4)\rangle = 1\). Notice that the interval \((3, 4)\) is contained in both \((1, 5)\) and \((2, 7)\), but the count is 1.

You can assume that the input to your algorithm is sorted in increasing order of the first coordinate and that all the coordinates (the \(a_i\)’s and \(b_i\)’s) are distinct.

(a) (5 points) Give a brute force solution to this problem (code or prose).

(b) (8 points) Design an algorithm that has \(O(n)\) work and \(O(\log n)\) span. Carefully explain your algorithm; you don’t have to write code. Hint: The algorithm is short.
Question 5: Quicksort (17 points)
Assume throughout that all keys are distinct.

(a) (3 points) TRUE or FALSE. In randomized quicksort, each key is involved in the same number of comparisons.

(b) (7 points) What is the probability that in randomized quicksort, a random pivot selection on an input of \(n \) keys leads to recursive calls, both of which are no smaller than \(\frac{n}{16} \)? Show your work.

(c) (7 points) Consider running randomized quicksort on a permutation of \(1, \ldots, n \). What is the probability that a quicksort call tree has height exactly \(n \)? Note: the height of a tree is the number of nodes on its longest path.
Question 6: Maximum Elements
(17 points)

Recall the `max2` problem from lecture: this problem is to find the two largest elements in a sequence of \(n \) unique numbers. Here’s the function given in the lecture notes:

```sml
fun max2 S = 
    let
        fun replace ((m1,m2), v) = 
            if v <= m2 then (m1, m2) 
            else if v <= m1 then (m1, v) 
            else (v, m1)
        val (s0, s1) = (nth S 0, nth S 1)
        val start = if s0 >= s1
                    then (s0, s1)
                    else (s1, s0)
    in
        iter replace start (drop (S, 2))
    end
```

(a) (5 points) Write SML or pseudocode for the function `max3`, which is like `max2`, except it finds the **three** largest elements in the sequence.

```sml
fun max3 S = 
    let
        in
            end
```
(b) (7 points) Assuming the input ordering is randomized (all permutations are equally likely), write an expression for the exact number of comparisons \texttt{max3} does in expectation. State your answer in terms of \emph{n}, the number of elements in the sequence.

(c) (5 points) Simplify any sums in your answer to part (b) above. You may state bounds that are tight within a constant additive term.
Question 7: Higher Order Costs (16 points)
For full credit, show your work.

(a) (8 points) Give closed forms in terms of Θ for the work and span of the function f assuming the sequence s contains n sequences of m elements each and b contains m elements.

```haskell
fun zipPlus (s1: int seq, s2: int seq) = map2 op+ s1 s2
fun f (b : int seq) (s : int seq seq) = reduce zipPlus b s

W_f(n,m) = 

S_f(n,m) = 
```

(b) (8 points) Give closed forms in terms of Θ for the work and span of the following function g assuming the sequence s contains n sets of m elements each. Assume that all elements are unique across all sets and that element comparison is $O(1)$.

```haskell
fun g (s : Set.set seq) = reduce Set.union (Set.empty ()) s

W_g(n,m) = 

S_g(n,m) = 
```
Question 8: Parentheses Revisited (16 points)

A parenthesis expression is called immediately paired if it consists of a sequence of open-close parentheses — that is, of the form "()()() ... ()".

(a) (8 points) Longest immediately paired subsequence (LIPS) problem. Given a (not necessarily matched) parenthesis sequence s, the longest immediately paired subsequence problem requires finding a (possibly non-contiguous) longest subsequence of s that is immediately paired. For example, the LIPS of "(((((((())())()())())())())") is "()()()()()" as highlighted in the original sequence.

Write a function that computes the length of a LIPS for a given sequence. Your function should have $O(n)$ work and $O(lg n)$ span.

(Hint: Try to find a property that simplifies computing LIPS. This problem might be difficult to solve otherwise.)

```ml
  fun findLIPS (s: paren seq) : int = (* Work = O(n), Span = O(lg n) *)
```

(b) (8 points) Prove succinctly that your algorithm correctly computes LIPS.
Appendix: Library Functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Work</th>
<th>Span</th>
</tr>
</thead>
<tbody>
<tr>
<td>empty ()</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>singleton a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>length s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>nth s i</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tabulate f n</td>
<td>$O\left(\sum_{i=0}^{n-1} W_i \right)$</td>
<td>$O\left(\max_{i=0}^{n-1} S_i \right)$</td>
</tr>
<tr>
<td>map f s</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>map2 f s t</td>
<td></td>
<td></td>
</tr>
<tr>
<td>reduce f b s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>scan f b s</td>
<td>$O(n)$</td>
<td>$O(\lg n)$</td>
</tr>
<tr>
<td>filter p s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>showt s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hidet tv</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sort cmp s</td>
<td>$O(n \lg n)$</td>
<td>$O(\lg^2 n)$</td>
</tr>
<tr>
<td>merge cmp s t</td>
<td></td>
<td></td>
</tr>
<tr>
<td>flatten s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>append (s, t)</td>
<td>$O(m + n)$</td>
<td>$O(1)$</td>
</tr>
</tbody>
</table>

15–210 Practice Exam I 12 of 13 February 2014
<table>
<thead>
<tr>
<th>Table/Set Operations</th>
<th>Work</th>
<th>Span</th>
</tr>
</thead>
<tbody>
<tr>
<td>size(T)</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>singleton(k,v)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>filter f T</td>
<td>$O\left(\sum_{(k,v)\in T} W(f(v))\right)$</td>
<td>$O\left(\lg</td>
</tr>
<tr>
<td>map f T</td>
<td>$O\left(\sum_{(k,v)\in T} W(f(v))\right)$</td>
<td>$O\left(\max_{(k,v)\in T} S(f(v))\right)$</td>
</tr>
<tr>
<td>tabulate f S</td>
<td>$O\left(\sum_{k\in S} W(f(k))\right)$</td>
<td>$O\left(\max_{k\in S} S(f(k))\right)$</td>
</tr>
<tr>
<td>find T k</td>
<td></td>
<td></td>
</tr>
<tr>
<td>insert f (k,v) T</td>
<td>$O(\lg</td>
<td>T</td>
</tr>
<tr>
<td>delete k T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>extract (T_1,T_2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>merge f T_1 T_2</td>
<td>$O\left(m \lg \left(\frac{n+m}{m}\right)\right)$</td>
<td>$O(\lg(n + m))$</td>
</tr>
<tr>
<td>erase (T_1,T_2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>domain T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>range T</td>
<td>$O(</td>
<td>T</td>
</tr>
<tr>
<td>toSeq T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>collect S</td>
<td>$O(</td>
<td>S</td>
</tr>
<tr>
<td>fromSeq S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>intersection (S_1,S_2)</td>
<td>$O\left(m \lg \left(\frac{n+m}{m}\right)\right)$</td>
<td>$O(\lg(n + m))$</td>
</tr>
<tr>
<td>union (S_1,S_2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>difference (S_1,S_2)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

where $n = \max(|T_1|,|T_2|)$ and $m = \min(|T_1|,|T_2|)$. For reduce you can assume the cost is the same as Seq.reduce f init $(\text{range}(T))$. In particular Seq.reduce defines a balanced tree over the sequence, and Table.reduce will also use a balanced tree. For merge and insert the bounds assume the merging function has constant work.