1 Announcements

- HW1 is due on Monday January 28. Hopefully you have all started by now; if not, now would be a good time.
- If you are not able/want to use Piazza to contact the course staff, you may send email to 15210-staff@lists.andrew.cmu.edu.
- Questions from lecture or homework?

2 Recurrences

Today we will be talking about how to solve recurrences. This will be helpful for you when doing your next homework assignment.

Let's start by solving a recurrence which should be familiar to all of you as a warmup:

\[W(n) = 2W(n/2) + O(n) \]

Suppose \(W(1) = O(1) \). We claim that \(W(n) = O(n) \). Is this true? Let's try to prove it by induction.

Base case: Given.

Inductive hypothesis: For all \(i < n \), \(W(i) = O(i) \).

Inductive case:

\[W(n) = 2W(n/2) + O(n) \]

\[= 2[O(n/2)] + O(n) \]

\[\leq 2O(n) + O(n) \]

\[= O(n) \]

So, we proved that \(W(n) = O(n) \). Or did we?
2.1 A Closer Look

What went wrong? Let’s take a closer look at the definition of Big-O.

Definition 2.1. \(f = O(n) \) if there exists \(c > 0 \) and \(n_0 > 0 \) such that \(f(n) \leq cn \) for all \(n > n_0 \).

Using Definition 2.1 we can prove the following lemma:

Lemma 2.2. If \(f = O(n) \), there exist constants \(k_1, k_2 \) so that \(f(n) \leq k_1 n + k_2, n \geq 0 \)

Proof. By the definition of Big-O, \(f = O(n) \), so there exists constants \(c \) and \(n_0 \) such that \(f(n) \leq cn \) for \(n > n_0 \). Then \(k_1 = c, k_2 = \max(f(i) : 0 \leq i < n_0) \) works.

So, when we say \(W(n) = O(n) \), we mean that there exists some \(n_0, c \) such that for all \(n > n_0 \), \(W(n) \leq cn \), and want to show that there exists constants \(k_1 \) and \(k_2 \) such that \(W(n) \leq k_1 n + k_2 \) for all \(n \geq 0 \). This isn’t the case in our proof of the inductive case:

\[
W(n) \leq 2W(n/2) + cn \\
\leq 2 \left[k_1 n/2 + k_2 \right] + cn \\
= (k_1 + c)n/2 + 2k_2 \\
\neq k_1 n + k_2
\]

Do you see what went wrong?

Since \(c > 0 \), there is no choice of \(c \) that makes this proof go through.

2.2 Doing It Correctly

Now let’s try correctly proving \(W(n) = O(n \log n) \). We assume there are constants \(n_0 \) and \(c \) such that for all \(n > n_0 \), \(W(n) \leq cn \log n \). So we want to show that there are constants \(k_1 \) and \(k_2 \) such that \(W(n) \leq k_1 n \log n + k_2 \). To make the proof go through we let \(k_1 = 2c \) and \(k_2 = c \). The base case holds because \(W(1) = k_2 = O(1) \). Here is the proof of the inductive case:

\[
W(n) \leq 2W(n/2) + cn \\
\leq 2(k_1 n \log(n/2) + k_2) + cn \\
= k_1 n(\log n - 1) + 2k_2 + cn \\
= k_1 n \log n + k_2 + (cn + k_2 - k_1 n) \\
\leq k_1 n \log n + k_2,
\]

where the final step follows because \(cn + k_2 - k_1 n \leq 0 \) as long as \(n > 1 \).
2.3 Brick Method

Yesterday in lecture we went over the brick method for determining if a recurrence is root-dominated, leaf-dominated, or balanced. It’s a good way to get started when solving a recurrence.

- For $W(n) = 4W(n/2) + O(n)$, the recursion tree is:

\[
\begin{array}{c}
\bullet \quad \bullet \quad \bullet \quad \bullet \\
\end{array}
\]

That is, we have at level i:

<table>
<thead>
<tr>
<th>Problem Size</th>
<th>$n/2^i$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node Cost</td>
<td>$\leq k_1(n/2^i) + k_2$</td>
</tr>
<tr>
<td>Number of Nodes</td>
<td>4^i</td>
</tr>
</tbody>
</table>

So the cost at each level is bounded by

\[4^i \cdot (k_1(n/2^i) + k_2) = k_1 \cdot 2^i \cdot n + 4^i \cdot k_2\]

This gives us a stack of bricks which is dominated at the leaves because the cost at level i geometrically increases by more than a constant factor of 2. So $W(n) = O(\text{number of leaves}) = O(n^2)$, since the leaves are at level $\log_2 n$ and there are $4^{\log_2 n} = n^2$ of them.

- For $W(n) = W(3n/4) + O(n)$, we have at level i:

\[
\begin{array}{c}
\bullet \quad \bullet \quad \bullet \quad \bullet \\
\end{array}
\]

The cost at each level is bounded by

\[1 \cdot (k_1(3/4)^i + k_2) = k_1 \cdot (3/4)^i \cdot n + k_2\]

This gives us a stack of bricks which is dominated at the root node because the cost at level i geometrically decreases by a constant factor of $3/4$. So $W(n) = O(\text{cost at root}) = O(n)$.

- For $W(n) = 2W(n/2) + O(n)$, we have at level i:

\[
\begin{array}{c}
\bullet \quad \bullet \quad \bullet \quad \bullet \\
\end{array}
\]

The cost at each level is bounded by

\[2^i \cdot (k_1(n/2^i) + k_2) = k_1 \cdot n^2 + 2^i \cdot k_2\]
The cost at each level is bounded by

\[2^i \cdot \left(k_1 \frac{n}{2^i} + k_2 \right) = k_1 \cdot n + 2^i \cdot k_2 \]

This gives us a stack of bricks which is balanced throughout because the cost at every level is the same, within a constant factor. So \(W(n) = O(\text{height of tree } \times \text{work at each level}) = O(n \log n) \).

- For \(W(n) = W(n/2) + O(n) \), we have at level \(i \):

\[
\begin{array}{c}
\text{Problem Size} \\
(1/2)^i n \\
\text{Node Cost} \\
\leq k_1 (1/2)^i n + k_2 \\
\text{Number of Nodes} \\
1
\end{array}
\]

The cost at each level is bounded by

\[1 \cdot \left(k_1 (1/2)^i + k_2 \right) = k_1 \cdot (1/2)^i \cdot n + k_2 \]

This gives us a stack of bricks which is dominated at the root node because the cost at level \(i \) geometrically decreases by a constant factor of \(1/2 \). So \(W(n) = O(\text{cost at root}) = O(n) \).