Welcome to 210! This recitation is aimed at getting you started on Homework 1, which will be released later today. We will be using SML/NJ as our default programming language, which you should be familiar with if you have taken 15-150 previously. We will expect you to write clean and readable (self-documenting!) code as well as mathematical proofs.

1 Administrivia

Where is my assignment? We will be distributing the assignments for this course through Autolab (https://autolab.cs.cmu.edu/). You will also be submitting your assignments on Autolab.

When are Office Hours? Office Hours will be posted on the course webpage at

http://www.cs.cmu.edu/~15210/staff.html

These times are subject to change. If you have time conflicts and cannot attend any of the listed office hours, please contact one of the course staff.

2 Let’s Begin!

We’ll begin with a running example: the parenthesis matching problem. We define it as follows:

• **Input:** a char sequence \(s : \text{char seq} \), where each \(s_i \) is either an “(“ or “)”. For instance, we could get a parenthesis-matched sequence

\[
s = (,,),,)
\]

or an unmatched one

\[
t = (,,),,)
\]

• **Output:** \texttt{true} if \(s \) represents a parenthesis-matched string and \texttt{false} otherwise. In the above examples, the algorithm should output \texttt{true} on input \(s \) and \texttt{false} on input \(t \).

To simplify the presentation, we will be working with a paren data type instead of characters. Specifically, we will write a function \texttt{match} of type \texttt{paren seq -> bool} that determines whether the input is a well-formed parenthesis expression (i.e., it is a parenthesis-matched sequence). The type \texttt{paren} is given by

```haskell
datatype paren = OPAREN | CPAREN
```

where OPAREN represents an open parenthesis and CPAREN represents a close parenthesis.

So, how would we go about solving this problem? Let's begin with a simple sequential solution and work our way to a work-optimal parallel solution.

2.1 Sequence iter

As in 15-150, you will be making extensive use of a SEQUENCE library throughout this course. For the current problem, we'll use the function iter (for iterate) from the sequence library. It has the following type:

```
val iter : ('b * 'a -> 'b) -> 'b -> 'a seq -> 'b
```

If f is a function, b is a value, and s is a sequence, then iter f b s iterates f with left association on s using b as the base case. You may think of f as a state transition function and b as a base state.

2.2 Back to Parentheses

How can we use this to solve the parenthesis matching problem? As we iterate across the sequence, we can keep track of the number of open parentheses that we have seen so far and subtract from this number when we find a closing one. For a well-formed parenthesis expression, when we reach the end of the sequence we should have a value of 0.

Is this sufficient?

No, if the number goes below zero at any point, then when we know we can't possibly have a well-formed parenthesis expression—we'll designate a special state to represent this outcome.

What type should we use to represent the state? int option.

```fun parenMatch p =
  let
    fun pm (NONE, _) | (SOME 0, CPAREN) = NONE
    | pm (SOME c, CPAREN) = SOME (c-1)
    | pm (SOME c, OPAREN) = SOME (c+1)
    in
      iter pm (SOME 0) p = (SOME 0)
  end
```

You can show that this solution has $O(n)$ work and span, where n is the length of the input sequence.

How can we make it more parallel?

3 Divide and Conquer

As you have already seen in previous classes, divide and conquer is a powerful technique in algorithms design that often leads to efficient parallel algorithms. A typical divide and conquer algorithm consists
of 3 main steps (1) divide, (2) recurse, and (3) combine.

To follow this recipe, we first need to answer the question: how should we divide up the sequence? We’ll first try the simplest choice, which is to split it in half—and attempt to merge the results together somehow. This leads to the next question: what would the recursive calls return?

Let’s try returning whether the given sequence is well-formed. Clearly, if both \(s_1\) and \(s_2\) are well-formed expressions, \(s_1\) concatenated with \(s_2\) must be a well-formed expression. However, we could have \(s_1\) and \(s_2\) such that neither of which is well-formed but \(s_1s_2\) is well-formed (e.g., “((“ and “))). This is not enough information to conclude whether \(s_1s_2\) is well-formed.

We need more information from the recursive calls. You are probably already familiar with a similar situation from mathematical induction—you often need to strengthen the inductive hypothesis. We’ll rely crucially on the following observations (which can be formally proven by induction):

Observation 3.1. If \(s\) contains “()” as a substring, then \(s\) is a well-formed parenthesis expression if and only if \(s’\) derived by removing this pair of parenthesis “()” from \(s\) is a well-formed expression.

Observation 3.2. If \(s\) does not contain “()” as a substring, then \(s\) has the form “)\((”. That is, it is a sequence of close parens followed by a sequence of open parens.

That is to say, on a given sequence \(s\), we’ll keep simplifying \(s\) conceptually until it contains no substring “()” and return the pair \((i, j)\) as our result. This is relatively easy to do recursively. Consider that if \(s = s_1s_2\), after repeatedly getting rid of “()” in \(s_1\) and separately in \(s_2\), we’ll have that \(s_1\) reduces to “)\((i” and \(s_2\) reduces to “)\((k\ell” for some \(i, j, k, \ell\). To completely simplify \(s\), we merge the results. That is, we merge “)\((i” with “)\((k\ell”. The rules are simple:

- If \(j \leq k\) (i.e., more close parens than open parens), we’ll get “)\((i + k - j\ell”.
- Otherwise \(j > k\) (i.e., more open parens than close parens), we’ll get “)\((\ell + j - k”.

This leads directly to a divide and conquer algorithm.

3.1 How to split a sequence in half?

The sequence library we give you provides a conceptual view of sequences called treeview that lends itself particularly well to divide-and-conquer algorithms. For those of you who have used listview in 15-150, this concept will be very familiar. To review, we have a data type ‘a treeview defined as follows:

```ml
datatype 'a treeview =
    EMPTY
  | ELT of 'a
  | NODE of ('a seq * 'a seq)
```

The function `showt` provides a means to examine the sequence in the treeview:

```ml
val showt : 'a seq -> 'a treeview
```
Essentially, \texttt{showt} splits the sequence in approximately half and returns both halves as sequences, provided that the input sequence has length at least 2. The two base cases are for empty and singleton sequences.

3.2 Implementing the algorithm in treeview

To make it more obvious which calls are being made in parallel, we will also introduce a function

\[
\text{par} : (\text{unit} \to 'a) \times (\text{unit} \to 'b) \to 'a \times 'b
\]

If you run \texttt{par \ (f, g)}, this construct allows you to execute the two functions \(f\) and \(g\) in parallel.

```ml
fun parenMatch s = let
  fun pm s = case showt s
      of EMPTY => (0,0)
      | ELT OPAREN => (0,1)
      | ELT CPAREN => (1,0)
      | NODE (l, r) =>
          let
              val ((i,j),(k,l)) = par (fn () => pm l, fn () => pm r)
          in
              if j > k then (i, l+j-k)
              else (i+k-j, l)
          end
  in
  pm s = (0,0)
end
```

Running Time Analysis: Let's assume that \texttt{showt} takes \(O(n)\) work and span on any sequence of length \(n\). We can formulate the work and span recurrences as follows:

\[
W(n) = 2 \cdot W(n/2) + W_{\text{showt}}(n) = 2 \cdot W(n/2) + O(\log n)
\]

\[
S(n) = S(n/2) + S_{\text{showt}}(n) = S(n/2) + O(\log n).
\]

It is not too hard to see that \(S(n)\) is \(O(\log^2 n)\)

\[
S(n) = \log(n) + \log(n/2) + \ldots + \log(1) \leq \log(n) + \log(n) + \ldots + \log(n) \quad \text{\(\log n\) times}
\]

\[
\in O(\log^2 n)
\]

It is a little more work to see \(W(n) = O(n)\).
Lemma 1

\[\sum_{i=0}^{\lg n} 2^i = 2n - 1 \]

Proof. Take \(S = \sum_{i=0}^{\lg n} 2^i = 2^0 + 2^1 + \cdots + 2^{\lg n} \). We can get the closed form directly using a formula for geometric sums, but it's easy to derive:

\[
2S = 2^1 + 2^2 + \cdots + 2^{\lg n} + 2^{\lg n + 1} \\
S = 2^0 + 2^1 + 2^2 + \cdots + 2^{\lg n}
\]

Subtracting \(S \) from \(2S \), the terms in the middle cancel out and we're left with

\[S = 2^{\lg(n+1)} - 2^0 = 2n - 1 \]

\[\square \]

Lemma 2

\[\sum_{i=0}^{\lg n} i2^i = 2n \lg n - (2n - 2) \]

Proof. Take \(S = \sum_{i=0}^{\lg n} i2^i = 0 \cdot 2^0 + 1 \cdot 2^1 + 2 \cdot 2^2 + \cdots + \lg n 2^{\lg n} \):

\[
S = 1 \cdot 2^1 + 2 \cdot 2^2 + 3 \cdot 2^3 + \cdots + \lg n 2^{\lg n} \\
2S = 1 \cdot 2^1 + 2 \cdot 2^2 + 3 \cdot 2^3 + \cdots + (\lg n - 1)2^{\lg n} + \lg n 2^{\lg n + 1}
\]

Subtracting \(2S \) from \(S \), we can apply Lemma 1 from above:

\[-S = 2^1 + 2^2 + \cdots + 2^{\lg n} - \lg n 2^{\lg n + 1} \]

\[-S = (2n - 2) - \lg n 2^{\lg n + 1} = (2n - 2) - 2n \lg n \]

\[S = 2n \lg n - (2n - 2) \]

\[\square \]

Theorem

\[W(n) = 2W(n/2) + O(\lg n) \in O(n) \]

\[
W(n) = \sum_{i=0}^{\lg n} 2^i \left(a \lg(n/2^i) + b \right) \\
= a \sum_{i=0}^{\lg n} 2^i (\lg n - i) + b \sum_{i=0}^{\lg n} 2^i \\
= a \lg n \sum_{i=0}^{\lg n} 2^i - a \sum_{i=0}^{\lg n} i2^i + b \sum_{i=0}^{\lg n} 2^i \\
= a \lg n (2n - 1) - a (2n \lg n - (2n - 2)) + b(2n - 1) \quad \text{(Lemma 1&2)} \\
= 2an \lg n - a \lg n - 2an \lg n + 2an - 2a + 2bn - b \\
= (a + b)(2n - 1) - a \lg n - a \in O(n)
\]

\[\square \]
4 To Be Continued...

Homework 1 has been released (on Autolab) and is due on Monday, January 28. There will be a SML coding portion related to parenthesis matching and also problems on asymptotic analysis. Please check the course website for office hours if you have trouble.