15–210: Parallel and Sequential Data Structures and Algorithms

PrACTICE Exam I (Solutions)

February 2013

• There are 14 pages in this examination, comprising 8 questions worth a total of 150 points. The last 2 pages are an appendix with costs of sequence, set and table operations.

• You have 80 minutes to complete this examination.

• Please answer all questions in the space provided with the question. Clearly indicate your answers.

• You may refer to your one double-sided $8\frac{1}{2} \times 11$ in sheet of paper with notes, but to no other person or source, during the examination.

• Your answers for this exam must be written in blue or black ink.

Full Name: Edsger W. Dijkstra

Andrew ID: ___________________________ Section: ___________________________
<table>
<thead>
<tr>
<th>Question</th>
<th>Points</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recurrences</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Short Answers</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Missing Element</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Priority Queues</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Strongly Connected Component</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Interval Containment</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Higher Order Costs</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Parentheses Revisited</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Total:</td>
<td>150</td>
<td></td>
</tr>
</tbody>
</table>
Question 1: Recurrences (20 points)
Recall that \(f(n) \) is \(\Theta(g(n)) \) if \(f(n) \in O(g(n)) \) and \(g(n) \in O(f(n)) \). Give a closed-form solution in terms of \(\Theta \) for the following recurrences. Also, state whether the recurrence is dominated at the root, the leaves, or equally at all levels of the recurrence tree.

You do not have to show your work, but it might help you get partial credit.

(a) (5 points) \(f(n) = 5f(n/5) + \Theta(n) \).

Solution: \(\Theta(n \log n) \), equal.

(b) (5 points) \(f(n) = 3f(n/2) + \Theta(n^2) \).

Solution: \(\Theta(n^2) \), root dominated.

(c) (5 points) \(f(n) = f(n/2) + \Theta(\log n) \).

Solution: \(\Theta(\log^2 n) \), approximately equal.

(d) (5 points) \(f(n) = 5f(n/8) + \Theta(n^{2/3}) \).

Solution: \(\Theta(n^{\log_8 5}) \) (roughly \(\Theta(n^{0.77}) \)) leaves dominated.
Question 2: Short Answers (20 points)

(a) (5 points) Assume you are given an associative function \(f(a, b) : \text{int seq} \times \text{int seq} \rightarrow \text{int seq} \) which takes two sequences of length \(n_1 \) and \(n_2 \) returning a sequence of length \(n_1 + n_2 \). It does \(O((n_1 + n_2)^2) \) work and \(O(\log(n_1 + n_2)) \) span. What is the work and span of the following function?

\[
\text{fun foo}(S : \text{int seq}) = \\
\quad \text{Seq.reduce } f \text{ Seq.empty (Seq.map Seq.singleton } S) \\
\]

Solution: \(W = \Theta(n^2), S = \Theta(\log^2 n) \)

(b) (5 points) Implement \texttt{reduce} using contraction. You can assume the input length is a power of 2.

Solution:

\[
\text{fun reduce } f \ b \ s = \\
\quad \text{case length } s \\
\quad \text{of } 0 \Rightarrow b \\
\quad \mid 1 \Rightarrow f(b, \text{nth } s \ 0) \\
\quad \mid n => \\
\quad \quad \text{let} \\
\quad \quad \quad \text{val } x = \text{tabulate} \\
\quad \quad \quad \quad (\text{fn } i \Rightarrow \text{case } i = (n \div 2) \text{ of} \\
\quad \quad \quad \quad \text{true } \Rightarrow \text{nth } s \ (2*i) \\
\quad \quad \quad \quad \text{| } _\Rightarrow f\text{(nth } s \ (2*i), \text{nth } s \ (2*i + 1)) \\
\quad \quad \quad \quad \quad ((n-1) \div 2)+1) \\
\quad \quad \text{in } \text{reduce } f \ b \ x \\
\quad \text{end} \\
\]

(c) (5 points) Given a graph with integer edge weights between 1 and 5 (inclusive) you want to find the shortest weighted path between a pair of vertices. How would you reduce this problem to the shortest unweighted path problem, which can be solved with \textit{breadth-first} search (BFS).

Solution: Replace each edge with weight \(i \) with a simple path of \(i \) edges each with weight 1. Then solve with BFS.
(d) (5 points) Recall the implementation of depth-first search (DFS) shown in class (on Tuesday Oct. 2) using the enter and exit functions. Circle the correct answer for each of the following questions assuming DFS starts at A:

![Graph Diagram]

- **enter D could be called before enter E:** True False
- **enter E could be called before enter D:** True False
- **enter D could be called before enter C:** True False
- **exit A could be called before exit B:** True False
- **exit D could be called before enter B:** True False

Solution: True, True, True, False, True
Question 3: Missing Element (15 points)

For 15210, there is a roster of \(n \) unique Andrew ID’s, each a string of at most 9 characters long (so `String.compare` costs \(O(1) \)).

In this problem, the roster is given as a sorted string sequence \(R \) of length \(n \). Additionally, you are given another sequence \(S \) of \(n - 1 \) unique ID’s from \(R \). The sequence \(S \) is not necessarily sorted. Your task is to design and code a divide-and-conquer algorithm to find the missing ID.

(a) (10 points) Write an algorithm in SML that has \(O(n) \) work and \(O(\log^2 n) \) span.

```sml
open ArraySequence
fun missing_elt(R: string seq, S: string seq) : string =
  let fun lessThan a b = (String.compare(b, a)=LESS) (* is b<a? *)
  in
    case (length R)
    of 0 => raise Fail "should not get here"
     | 1 => nth R 0
     | n =>
        let val p = nth R (n div 2)
            val Sleft = filter (lessThan p) S
            val Sright = filter (not o (lessThan p)) S
            val Rleft = take (R, n div 2)
            val Rright = drop (R, n div 2)
        in
          if (length Sleft < length Rleft) then
            missing_elt (Rleft, Sleft)
          else
            missing_elt (Rright, Sright)
        end
  end
end
```

(b) (5 points) Give a brief justification of why your algorithm meets the cost bounds.

Solution: We maintain the variant that \(|R| = |S| + 1 \). The body of the function contains only `filter`, `take`, and `drop`, which have \(\Theta(|R|) \) work and \(\Theta(\log |R|) \) span. Furthermore, the algorithm makes only one recursive call on the problem of size \(|R|/2 \), so we have \(W(n) = W(n/2) + \Theta(n) \) and \(S(n) = S(n/2) + \Theta(\log n) \). These recurrences solve to \(W(n) = \Theta(n) \) and \(S(n) = \Theta(\log^2 n) \).
Question 4: Priority Queues (20 points)

In this question we consider a special implementation of priority queue (pq) called meldable priority queue (or meldable/mergeable heap). This data structure supports the operation meld(p, q) of type PQ * PQ -> PQ, which produces a new priority queue that contains all the elements of its two input priority queues.

The cost of meld and other operations supported by this data structure are as follows:

<table>
<thead>
<tr>
<th>Operation</th>
<th>Work and Span</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>empty</td>
<td>O(1)</td>
<td>an empty priority queue</td>
</tr>
<tr>
<td>insert(Q, v)</td>
<td>O(log(</td>
<td>Q</td>
</tr>
<tr>
<td>deleteMin(Q)</td>
<td>O(log(</td>
<td>Q</td>
</tr>
<tr>
<td>meld(Q1, Q2)</td>
<td>O(log(</td>
<td>Q1</td>
</tr>
</tbody>
</table>

In the following questions, let S be an (unsorted) array-sequence of key-value pairs, and |S| = n.

(a) (6 points) Without using meld, how would you create a priority queue from S? (One-sentence answer is enough). What is the work and span of this operation? Give a tight bound using Θ.

Solution: Insert elements one by one into an empty PQ. Total work is $\sum_{i=1}^{\lfloor S \rfloor} O(\log i) = |S| \log |S|$. Span is the same.

(b) (8 points) Write an algorithm (in pseudocode or in SML) that uses the meld operation to construct a priority queue from S in $O(n)$ work and $O(\log^2 n)$ span.

Solution:

```
Seq.reduce meld empty (Seq.map (fn x => insert(empty,x)) S)
```

(c) (6 points) If the priority queue is represented as a sorted array-sequence could we match the bounds given in the table? Explain briefly. You can assume sorting on the keys requires $\Theta(n \log n)$ time.

Solution: No. For two reasons. Firstly if we could then part (b) would imply that we could sort in $O(n)$ work, and secondly we cannot insert into a sorted array in logarithmic work since we have to move all the elements over.
Question 5: Strongly Connected Component (20 points)

In this question you will write two functions on directed graphs. We assume that graphs are represented as

\[
type \text{graph} = \text{vertexSet} \times \text{vertexTable}
\]

with key comparisons taking constant work.

(a) (10 points) Given a directed graph \(G = (V, E)\) its transpose is \(G^T = (V, E')\) where

\[
E' = \{(b, a) | (a, b) \in E\}.
\]

Informally, it’s another directed graph on the same vertices with every edge flipped.

Below is a skeleton of an SML definition for transpose that computes the transpose of a graph. Fill in the blanks to complete the implementation. Your implementation must have work in \(O(|E| \lg |V|)\) and span in \(O(\lg^2 |V|)\).

```sml
fun transpose (G : graph) : graph =
  let
    val S = vertexTable.toSeq(G) (* returns (vertex*vertexSet) seq *)
    fun flip(u,nbrs) = Seq.map (fn v => (v,u)) (vertexSet.toSeq nbrs)
    val ET = Seq.flatten(Seq.map flip S)
    val T = vertexTable.\_collect\_ET
    in
    vertexTable.map vertexSet.fromSeq T
  end
```
(b) (10 points) A strongly connected component of a directed graph $G = (V,E)$ is a subset S of V such that every vertex $u \in S$ can reach every other vertex $v \in S$ (i.e., there is a directed path from u to v), and such that no other vertex in V can be added to S without violating this condition. Every vertex belongs to exactly one strongly connected component in a graph.

Implement the function

$$\text{scc : graph * vertex -> vertexSet}$$

such that $\text{scc}(G,v)$ returns the strongly connected component containing v. You may assume the existence of a function

$$\text{reachable : graph * vertex -> vertexSet}$$

such that $\text{reachable}(G,v)$ returns all the vertices reachable from v in G. Not including the cost of reachable, your algorithm must run in $O(|E| \lg |V|)$ work and $O(\lg^2 |V|)$ span. You might find transpose useful and can assume the given time bounds.

\[
\begin{align*}
\text{fun scc (G : graph, v : vertex) : vertexSet =} \\
\text{vertexSet.intersection(reachable(G,v),} \\
\text{reachable(transpose(G,v))))}
\end{align*}
\]
Question 6: Interval Containment (15 points)

An interval is a pair of integers \((a,b)\). An interval \((a,b)\) is contained in another interval \((\alpha,\beta)\) if \(\alpha < a\) and \(b < \beta\). In this problem, you will design an algorithm

\[
\text{count: } (\text{int} \times \text{int}) \text{ seq } \rightarrow \text{ int}
\]

which takes a sequence of intervals (i.e., ordered pairs) \((a_0, b_0), (a_1, b_1), \ldots, (a_{n-1}, b_{n-1})\) and computes the number of intervals that are contained in some other interval. If an interval is contained in multiple intervals, it is counted only once.

For example, \(\text{count } \langle (0, 6), (1, 2), (3, 5) \rangle = 2\) and \(\text{count } \langle (1, 5), (2, 7), (3, 4) \rangle = 1\). Notice that the interval \((3, 4)\) is contained in both \((1, 5)\) and \((2, 7)\), but the count is 1.

You can assume that the input to your algorithm is sorted in increasing order of the first coordinate and that all the coordinates (the \(a_i\)’s and \(b_i\)’s) are distinct.

(a) (5 points) Give a brute force solution to this problem (code or prose).

(b) (10 points) Design an algorithm that has \(O(n)\) work and \(O(\log n)\) span. Carefully explain your algorithm; you don’t have to write code. Hint: The algorithm is short.
Question 7: Higher Order Costs (20 points)
For full credit, show your work.

(a) (10 points) Give closed forms in terms of Θ for the work and span of the function f assuming the sequence s contains n sequences of m elements each and b contains m elements.

\[
\text{fun } \text{zipPlus} \ (s1: \text{int seq}, \ s2: \text{int seq}) = \text{map2 op+ s1 s2} \\
\text{fun } f \ (b : \text{int seq}) \ (s : \text{int seq seq}) = \text{reduce zipPlus b s}
\]

\[W_f(n,m) = \]

Solution: The work for \(\text{zipPlus}\) is linear in the number of elements. The work at the leaves of the reduction tree is \(\frac{2}{2} \Theta(m)\). At each level the work decreases by a factor of 2. Thus, \(W_f(n,m) = \Theta(nm)\). Alternatively, using a divide and conquer view of reduce \(W_f(n,m) = 2W_f(n/2,m) + \Theta(m) = \Theta(nm)\), since the work is leaf dominated with \(n/2\) pairs of leaves, each with \(\Theta(m)\) work.

\[S_f(n,m) = \]

Solution: The span for \(\text{zipPlus}\) is \(\Theta(1)\). Since the reduction tree has depth \(\lg n\), \(S_f(n,m) = \Theta(\lg n)\)

(b) (10 points) Give closed forms in terms of Θ for the work and span of the following function \(g\) assuming the sequence \(s\) contains \(n\) sets of \(m\) elements each. Assume that all elements are unique across all sets and that element comparison is \(O(1)\).

\[
\text{fun } g \ (s : \text{Set.set seq}) = \text{reduce Set.union (Set.empty ()) s}
\]

\[W_g(n,m) = \]

Solution: Since each union is with sets of the same size, the work is linear in the number of elements. The size of the union set can double in size and the number of applications of union halves at each level, the total work at each level is \(\Theta(nm)\). Again, there are \(\lg n\) levels. Thus \(W_g(n,m) = \Theta(nm \lg n)\).

\[S_g(n,m) = \]

Solution: The span of union is the logarithm of the number of elements. Since the number of elements doubles each level above the leaves and for \(\lg n\) levels, the total span \(\sum_{i=1}^{\lg n} \lg(2^i m)\), which yields \(S_g(n,m) = \Theta(\lg n \lg(nm))\).
Question 8: Parentheses Revisited (20 points)
A parenthesis expression is called immediately paired if it consists of a sequence of open-close parentheses — that is, of the form ”()()()⋯()”.

(a) (10 points) **Longest immediately paired subsequence (LIPS) problem.** Given a (not necessarily matched) parenthesis sequence s, the longest immediately paired subsequence problem requires finding a (possibly non-contiguous) longest subsequence of s that is immediately paired. For example, the LIPS of “((((((((()))))))))(((())())())” is “()()()()()()” as highlighted in the original sequence.

Write a function that computes the length of a LIPS for a given sequence. Your function should have $O(n)$ work and $O(\log n)$ span.

(Hint: Try to find a property that simplifies computing LIPS. This problem might be difficult to solve otherwise.)

fun findLIPS (s: paren seq) : int = (* Work = O(n), Span = O(\log n) *)

Solution: The algorithm simply extracts immediately paired parentheses and counts them. We prove below why this is sufficient.

fun findLIPS (s: paren seq) =
 let
 fun isIP i =
 case (nth s i, nth s (i+1))
 of (LPAREN, RPAREN) => 1
 | _ => 0
 val nIPs = reduce op+ 0 (tabulate isIP (length s - 2))
 in
 2 * nIPs
 end

(b) (10 points) Prove succinctly that your algorithm correctly computes LIPS.

Solution: Consider any parenthesis expression and let () be an immediately paired parenthesis in the result. Let i and j be the positions of the parenthesis in the original sequence. Note that $i < j$. Let k be the leftmost RPAREN and note that $i < k \leq j$ and the parenthesis at $k - 1$ and k are immediately paired. In other words, there exists one immediately paired parentheses in the contiguous subsequence defined by i and j, e.g., “(...()⋯)”, “(...)”, “(...)”. It thus suffices to count the immediately paired parenthesis in the input.
Appendix: Library Functions

<table>
<thead>
<tr>
<th>ArraySequence</th>
<th>Work</th>
<th>Span</th>
</tr>
</thead>
<tbody>
<tr>
<td>empty ()</td>
<td></td>
<td></td>
</tr>
<tr>
<td>singleton a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>length s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>nth s i</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tabulate f n</td>
<td>$O\left(\sum_{i=0}^{n-1} W_i\right)$</td>
<td>$O\left(\max_{i=0}^{n-1} S_i\right)$</td>
</tr>
<tr>
<td>map f s</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>map2 f s t</td>
<td></td>
<td></td>
</tr>
<tr>
<td>reduce f b s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>scan f b s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>filter p s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>show t s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hidet tv</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sort cmp s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>merge cmp (s,t)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>flatten s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>append (s,t)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Empty Array**: $O(1)$, $O(1)$
- **Singleton Array**: $O(1)$
- **Length**: $O(1)$
- **Nth Element**: $O(1)$
- **Tabulate**: $O\left(\sum_{i=0}^{n-1} W_i\right)$, $O\left(\max_{i=0}^{n-1} S_i\right)$
- **Map**: $O(n)$, $O(\lg n)$
- **Map2**: $O(n)$, $O(\lg n)$
- **Reduce**: $O(n \lg n)$, $O(\lg^2 n)$
- **Scan**: $O(n \lg n)$, $O(\lg^2 n)$
- **Filter**: $O(n \lg n)$, $O(\lg^2 n)$
- **Show**: $O(n \lg n)$, $O(\lg^2 n)$
- **Hide**: $O(n \lg n)$, $O(\lg^2 n)$
- **Sort**: $O(n \lg n)$, $O(\lg^2 n)$
- **Merge**: $O(m + n)$, $O(\lg(m + n))$
- **Flatten**: $O(m + n)$, $O(\lg(m + n))$
- **Append**: $O(m + n)$, $O(1)$
<table>
<thead>
<tr>
<th>Table/Set Operations</th>
<th>Work</th>
<th>Span</th>
</tr>
</thead>
<tbody>
<tr>
<td>size(T)</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>singleton(k,v)</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>filter f T</td>
<td>$O\left(\sum_{(k,v)\in T} W(f(v))\right)$</td>
<td>$O\left(\lg</td>
</tr>
<tr>
<td>map f T</td>
<td>$O\left(\sum_{(k,v)\in T} W(f(v))\right)$</td>
<td>$O\left(\max_{(k,v)\in T} S(f(v))\right)$</td>
</tr>
<tr>
<td>tabulate f S</td>
<td>$O\left(\sum_{k\in S} W(f(k))\right)$</td>
<td>$O\left(\max_{k\in S} S(f(k))\right)$</td>
</tr>
<tr>
<td>find T k</td>
<td>$O(\lg</td>
<td>T</td>
</tr>
<tr>
<td>insert f (k,v) T</td>
<td>$O(\lg</td>
<td>T</td>
</tr>
<tr>
<td>delete k T</td>
<td>$O(\lg</td>
<td>T</td>
</tr>
<tr>
<td>extract (T_1,T_2)</td>
<td>$O(m \lg (n+m))$</td>
<td>$O(\lg(n+m))$</td>
</tr>
<tr>
<td>merge f (T_1,T_2)</td>
<td>$O(m \lg (n+m))$</td>
<td>$O(\lg(n+m))$</td>
</tr>
<tr>
<td>erase (T_1,T_2)</td>
<td>$O(\lg</td>
<td>T_1</td>
</tr>
<tr>
<td>domain T</td>
<td>$O(</td>
<td>T</td>
</tr>
<tr>
<td>range T</td>
<td>$O(</td>
<td>T</td>
</tr>
<tr>
<td>toSeq T</td>
<td>$O(</td>
<td>T</td>
</tr>
<tr>
<td>collect S</td>
<td>$O(</td>
<td>S</td>
</tr>
<tr>
<td>fromSeq S</td>
<td>$O(</td>
<td>S</td>
</tr>
<tr>
<td>intersection (S_1,S_2)</td>
<td>$O(m \lg (n+m))$</td>
<td>$O(\lg(n+m))$</td>
</tr>
<tr>
<td>union (S_1,S_2)</td>
<td>$O(m \lg (n+m))$</td>
<td>$O(\lg(n+m))$</td>
</tr>
<tr>
<td>difference (S_1,S_2)</td>
<td>$O(m \lg (n+m))$</td>
<td>$O(\lg(n+m))$</td>
</tr>
</tbody>
</table>

where $n = \max(|T_1|,|T_2|)$ and $m = \min(|T_1|,|T_2|)$. For reduce you can assume the cost is the same as Seq.reduce f init (range(T)). In particular Seq.reduce defines a balanced tree over the sequence, and Table.reduce will also use a balanced tree. For merge and insert the bounds assume the merging function has constant work.