15-150 Fall 2011
Lab 4

September 21, 2011

1 Introduction

The goal for this lab is to make you more comfortable writing functions that operate on trees.

Please take advantage of this opportunity to practice writing functions and proofs with the assistance of the TAs and your classmates. You are encouraged to collaborate with your classmates and to ask the TAs for help.

1.1 Getting Started

Please download the lab04.sml file from the course Web site or copy it from the lab afs directory

/afs/andrew.cmu.edu/course/15/150/asgn/lab/04/

This file contains some of the datatype definitions and functions that were discussed in the last couple lectures.

1.2 Methodology

You must use the five step methodology for writing functions for every function you write on this assignment. In particular, every function you write should have a purpose and tests.

2 Depth

Recall the definition of trees from lecture:

```sml
datatype tree = Empty
     | Node of (tree * int * tree)
```

As with any datatype, we can case on a tree like so:
case t of
 Empty => ...
 | Node (l, x, r) => ...

Intuitively, the depth of a tree is the length of the longest path from the root to a leaf. More precisely, we define the depth of a tree inductively: the depth of \texttt{Empty} is 0; the depth of \texttt{Node}(l,x,r) is one more than the larger of the depths of its two children \texttt{1} and \texttt{r}.

\textbf{Task 2.1} Define the function

\[\text{depth : tree} \rightarrow \text{int} \]

that computes the depth of a tree.

\textit{Hint:} You will probably find the function \texttt{max : int} * \texttt{int} \rightarrow \texttt{int}, which we have provided for you, useful.

\section{Lists to Trees}

For testing, it is useful to be able to create a tree from a list of integers. To make things interesting, we will ask you to return a \textit{balanced} tree: one where the depths of any two leaves differ by no more than 1.

\textbf{Task 3.1} Define the function

\[\text{listToTree : int list} \rightarrow \text{tree} \]

that transforms the input \texttt{list} into a balanced tree. \textit{Hint:} You may use the \texttt{split} function provided in the support code, whose spec is as follows:

\begin{itemize}
 \item If \texttt{l} is non-empty, then there exist \texttt{l1},\texttt{x},\texttt{l2} such that \texttt{split l} \Rightarrow (\texttt{l1,x,l2}) and
 \item \texttt{l} is \texttt{l1} @ \texttt{x::l2} and
 \item \texttt{length(l1)} and \texttt{length(l2)} differ by no more than 1
\end{itemize}

\section{Reverse}

Recall the function \texttt{treeToList} from lecture, which computes an in-order traversal of a tree:

\begin{verbatim}
fun treeToList (t : tree) : int list =
 case t of
 Empty => []
 | Node (l,x,r) => treeToList l @ (x :: (treeToList r))
\end{verbatim}

In this problem, you will define a function to reverse a tree, so that the in-order traversal of the reverse comes out backwards:

\[\text{treeToList (revT t)} = \text{reverse (treeToList t)} \]
Code

Task 4.1 Define the function

\[
\text{revT} : \text{tree} \rightarrow \text{tree}
\]

according to the above spec.

Have the TAs check your code for reverse before proceeding!

Analysis

Task 4.2 Determine the recurrence for the work of your \text{revT} function, in terms of the size (number of elements) of the tree. You may assume the tree is balanced. Adapt the analysis of \text{mergesort} on lists from lecture to determine the big-O of this recurrence.

Task 4.3 Determine the recurrence for the span of your \text{revT} function, in terms of the size of the tree. You may assume the tree is balanced. What is the big-O of this recurrence?

Correctness

Prove the following:

Theorem 1. For all trees \(t \), there exists a list \(v \) such that \(\text{toList} (\text{revT} t) \Rightarrow v \) and \(\text{reverse} (\text{toList} t) \Rightarrow v \).

You may use the following lemmas about \text{reverse} on lists:

- \text{reverse} [\] \Rightarrow [\]

- If \((\text{reverse} \ r) \ @ (x::(\text{reverse} \ l)) \Rightarrow v\) then \(\text{reverse} (l \ @ (x::r)) \Rightarrow v\).

Follow the template on the following page.
Case for Empty
To show:

Case for Node(1, x, r)
Two Inductive hypotheses:

To show:
Have the TAs check your analysis and proof before proceeding!

5 Binary Search

At this point, it behooves us to introduce another of SML’s built-in datatypes: order. order is a very simple datatype—it has precisely three values: GREATER, EQUAL, and LESS, and is defined as follows:

```sml
datatype order = GREATER | EQUAL | LESS
```

As you may have guessed, order represents the relative ordering of two values. At present, we care only about the relative ordering of ints. SML provides a function `Int.compare : int * int -> order` which compares two ints and calculates whether the first is GREATER than, EQUAL to, or LESS than the second respectively. This allows us to implement tri-valued comparisons, as follows:

```sml
case Int.compare (x1, x2) of
    GREATER => (* x1 > x2 *)
  | EQUAL => (* x1 = x2 *)
  | LESS => (* x1 < x2 *)
```

Task 5.1 Define the function

```sml
binarySearch : tree * int -> bool
```

that, assuming the tree is sorted, returns true if and only if the tree contains the given number. Your implementation should have work and span proportional to the depth of the tree. You should use `Int.compare`, rather than <, in your solution.