Introduction to ROBOTICS
Howie Choset
Are robots a good?

• 322 BC – Aristotle, a Greek philosopher, wrote “If every tool, when ordered, or even of its own accord, could do the work that befits it... then there would be no need either of apprentices for the master workers or of slaves for the lords.”
robot: (*noun*) …

What is a robot?

Insert image here
Humanoid Form
Boston Dynamics Petman/Atlas
Archeology (Bard, Fattovich, El-Maguid, Hawass)

THE ROUTE TO PUNT

BU professor Kathryn Bard has found remnants of ancient Egyptian ships that once traded with the mysterious land of Punt, which she believes was located on the Horn of Africa, somewhere between present-day Eritrea and Somalia.

Ancient Egyptians built seagoing ships on the Nile. The craft were carried disassembled to Wadi Gawasis, and pieced back together for Red Sea voyages.
Remove the Monuments
UNIVERSITY RESPONSE

Skin carrier robots

Rib carrier

Spar Holder

Rib carrier

Spar Catcher

Spar Catcher

Active/Passive Compliance

Deployable Arm

Ladder

Universal Omnidase

Copyright 2015. Howie Choset. All Rights Reserved
Proof of Concept Idea
Apples and Oranges

• USDA Specialty Crop Research Initiative
• First round (Fall 2008) $28M awarded
• Two Robotics Institute-led efforts won $10M total
 – Comprehensive Automation for Specialty Crops
 • Sanjiv Singh, PI
 • $6M / 4 years
 • Apples and horticultural stock
 – Integrated Automation for Sustainable Specialty Crop Farming Project
 • Tony Stentz and Herman Herman, PIs
 • $4M / 3 years
 • Oranges
Vision

Finds coarse 3D shape from a single image!
Dynamic Seethroughs

Kanade, Sheikh
Drug Discovery

Pos. (cm): (6.78, 10.99)

Vel. (cm/s): (-0.02, -0.01)

Behavior: IMMOBILE

Schneider
Cosmology

parameter space

true parameters

hypothetical parameters, θ

real universe

mathematical model

noisy observations

simulated observations

hypothesis test

Schneider
There is no widely accepted definition of what a robot is.
Is this a robot?
Are we there yet?
Urban Challenge
Self-driving Google Car
DARPA Rescue Challenge

Task 1: Vehicle
Task 2: Terrain
Task 3: Ladder
Task 4: Debris
Task 5: Door
Task 6: Wall
Task 7: Valve
Task 8: Hose
DARPA Rescue Challenge

SCHAFT 27 POINTS
IHMC ROBOTICS 20 POINTS
TARTAN RESCUE 18 POINTS
TEAM MIT 16 POINTS
DARPA Rescue Challenge
Google
Google Adds to Its Menagerie of Robots

Boston Dynamics Bot and Dolly
Autofus
Holonomi
Meka Robotics
Redwood Robotics
Industrial Perception
Schaft

Boston Dynamics’ four-legged robot named WildCat can gallop at high speeds.
Humanoids will Take Over
Inspirations:
Robots
Animals

Elements:
Perception
Intelligence
Action

Technologies:
Vision
Speech recog’n
Motion planning
Localization
Navigation
Dynamic balance
Gait recognition
Face recognition
Behavior recog’n
...

Applications:
Search image databases
Public health early warning
Astronomical survey
Watch mice
Tutor beginning readers
Museum guide
Watch for customers
Video games
Movie and TV animation
Model protein structure
Surgery
Vacuuming
...

Flow of Ideas
Carnegie Mellon

• 10,000 students
• $320M sponsored research
• History of leadership in Management, Computer Science, Statistics, Psychology, Engineering, Drama, Art, ... and Robotics!
• Of top 25, the youngest, almost smallest.
• Values:
 – We work.
 – We build.
 – We test.
 – We collaborate.
Founded 35 years ago as a research institute.

The first Robotics Department, for 30 years.
- Still more of a research institute
- PhD, MS, MRSD, BS2, Minor, FIRST, K-12, pre-K,

"The unquestioned worldwide leader in robotics research and education."

Advisory Board
Founded 35 years ago as a research institute.

The first Robotics Department, for 30 years.
- Still more of a research institute
- PhD, MS, MRSD, BS2, Minor, FIRST, K-12, pre-K,

“The unquestioned worldwide leader in robotics research and education.” Advisory Board

About 700 researchers
- 15% faculty (2/3 on soft $)
- 25% graduate students,
- 45% technical staff,
- 15% visiting faculty/postdocs.

Sponsored research budget:
~$100MM (2X7.25 years in real $)
Carnegie Mellon

- Drama
- MCS (Sci)
- SCS (Comp)
- CIT (Eng)
- Tepper (Bus)
- LTI
- CSD
- RI
- MLD
- HCII (ppl) (Learning)

About 700 researchers
- 15% faculty (2/3 on soft $)
- 25% graduate students,
- 45% technical staff,
- 15% visiting faculty/postdocs.

Sponsored research budget:
~$100MM (2X7.25 years in real $)
Large Robotics Activity
RI research foci

• Manufacturing
 – Planning, layout, scheduling, safety, monitoring, ...
• Field Robotics
 – Space, Security, Vehicles, Mining, Agriculture, Nuclear, ...
• Vision, perception in general
 – Faces, outdoor terrain, scene understanding, ...
• Manipulation and Motion Planning
• Machine Learning
• Mapping
• Aerial Robotics
• Medical
• Graphics, computer generated animation
 – Fluids, soft tissues, motion capture, hands, ...
• Human robot interaction
 – Education, behavior recognition, dancing, ...
• Novel mechanisms
• and more ... haptics, snakes, humanoids, logistics ...
Robotics Institute
Graduate Activities

• Courses
• PhD
• MS in Robotics
• MS in Vision
• MRSD
• RoboORG
Robotics Institute
Undergraduate Activities

• Courses
• Robotics Major
• Robotics Minor
• Fifth Year MS Program
• Robotics Club
• On-campus competitions: Mobot!
Fill out File Card

- Name
- Email
- Major
- Acting Major (Green – CS/ Yellow ECE/ Orange ME)
- Enrolled/Waitlist
- Favorite robot movie
- Why are you taking this class
- Draw a robot (on back)
Robotics and Related Courses

![Bar chart showing the number of classes offered by different universities in Robotics and Related Courses. The chart compares secondary graduate, secondary undergraduate, primary graduate, and primary undergraduate offerings. The universities included are CMU, MIT, WPI, Stanford, Cornell, Hopkins, CalTech, GaTech, Harvard, and PennState.](image-url)
Robotics Minor

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Choose among</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview/Introductory Course</td>
<td>16-311 Introduction to Robotics</td>
</tr>
<tr>
<td>Controls</td>
<td>18-370 Fundamentals of Control,</td>
</tr>
<tr>
<td></td>
<td>24-451 Feedback Control Systems</td>
</tr>
<tr>
<td></td>
<td>16-299 Introduction to Feedback Control Systems</td>
</tr>
<tr>
<td>Manipulation</td>
<td>15-384 Manipulation</td>
</tr>
<tr>
<td></td>
<td>24-355 Kinematics and Dynamics of Mechanisms (not offered regularly)</td>
</tr>
<tr>
<td>Two electives</td>
<td>Long list, see a subset below</td>
</tr>
<tr>
<td></td>
<td>An upper-level RI course</td>
</tr>
<tr>
<td></td>
<td>Up to one independent study</td>
</tr>
</tbody>
</table>

We have a very liberal view toward electives. Web site has descriptions. List is constantly changing because classes are offered and cancelled.

- 10-601: Machine Learning
- 11-344: Machine Learning in Practice
- 15-491: CMRoboBits:
- 15-494: Cognitive Robotics
- 15-385: Computer Vision
- 15-862: Computational Photography
- 16-362 / 16-862: Introduction to Mobile Robot Programming
- 16-421: Vision Sensors
- 16-861: Mobile Robot Design
- 16-865: Advanced Mobile Robot Development
- 18-342: Fundamentals of Embedded Systems *
- 18-348: Embedded System Engineering *
- 18-349: Embedded Real-Time Systems *
- 18-578: Mechatronic Design
- 24-491 / 24-492: Departmental Research Honors
- 24-673: Special Topics in Soft Robots - Mechanics, Design, and Control
- 24-675: Micro/Nano Robotics
- 48-787: Architectural Robotics
- 85-370: Perception
- 85-382: Consciousness and Cognition
- 85-395: Applications of Cognitive Science
- 85-412: Cognitive Modeling
- 85-419: Introduction to Parallel Distributed Processing
- 85-420: Perception and Perceptual Development
<table>
<thead>
<tr>
<th>Requirements (10 classes)</th>
<th>Choose among</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview/Introductory Course</td>
<td>16-311 Introduction to Robotics</td>
</tr>
<tr>
<td>Controls</td>
<td>18-370 Fundamentals of Control, 24-451 Feedback Control Systems, 16-299 Introduction to Feedback Control Systems</td>
</tr>
<tr>
<td>Kinematics</td>
<td>15-384 Manipulation (possibly rename to Kinematics and Dynamics of Motion and give it a 16 number), 24-355 Kinematics and Dynamics of Mechanisms (not offered regularly)</td>
</tr>
<tr>
<td>Cognition and Reasoning</td>
<td>10-601: Undergraduate Machine Learning, 15-381: Artificial Intelligence, 15-494: Cognitive Robotics, Upper-level RI planning course with instructor permission</td>
</tr>
<tr>
<td>“Hands-on Course”</td>
<td>15-491: CMRobotBits: Creating Intelligent Robots, 16-362: Mobile Robot Programming Lab, 18-578: Mechatronics, Upper-level RI project course like 16-861 or 16-865, Independent study with instructor permission</td>
</tr>
<tr>
<td>Two Electives</td>
<td>See list with minor or any upper level RI course. Any of these can be independent study but only one independent study is allowed. A student can also take additional courses from the core; e.g., a student who takes 15-385 as a core can take 16-421 as an elective</td>
</tr>
<tr>
<td>Systems Engineering</td>
<td>To be developed</td>
</tr>
<tr>
<td>Capstone Course</td>
<td>To be developed</td>
</tr>
</tbody>
</table>
Introduction to Robotics
The Categories Are…..

Computer Science

Electrical Engineering

Mechanical Engineering

Sense

Plan

Act

Build

Program

Debug
This semester we will study many aspects of robotics.

Vision

Controls

Motion Planning

Sensors and Sensor Planning

Mobile Robot Platforms

Forward Kinematics

Inverse Kinematics

Non-Holonomic constraints

http://generalrobotics.org
High Workload

- Lots of homework
- First HW assignment handed out today
- Second HW assignment handed out Wed
- Work responsibly
- Time consuming design experience
- If you cannot make a demo, must demo before due date
- Lots of work assigned around Carnival times
- Another design experience
- No superbowl/Stanley Cup/etc excuses
- Programming
- Exams
HW 1

• See web site
• **Due at beginning of class Tuesday, January 21rd** ← fix date on web site
• Create a webpage containing your text answers (and any pictures) in HTML format.
• Find a picture of a robot, not from Carnegie Mellon, on the web and display it. Comment on its application in terms of sense, plan, and act. As a student of Carnegie Mellon you get free webspace, click [here](http://www.example.com) to find out how to use it.
• **Program: Matrix-Vector Evaluator**
 Write a program that runs under unix to perform 3x1 vector and 3x3 matrix arithmetic.

• The program should take from *standard input* one line at a time a sequence of expressions, described below.

• A line with nothing on it should do nothing. The command END should terminate the program.

• The following are the commands to be defined:
 – Vector and Matrix instantiation.
 For vectors, a lower case letter followed by an `=" sign, and then followed by three numbers sets the value for the vector. For matrices, an upper case letter, followed by an `=" sign, and then followed by nine numbers sets the value for a matrix. To make things easier, assume there could only be 26 vectors and 26 matrices. Hint: there is a nice relationship between chars and ints in C.
 – Printing.
 – A vector or matrix on a line by itself followed by return should print the vector or matrix in their appropriate forms.
 – Addition.
 • $c = a + b$ ------- store the sum of a and b into c.
 • $C = A + B$ ------- store the sum of A and B into C.
 – Multiplication
 • $c = a.b$ ------- should compute the dot product of a and b and store in it the first component of c. (Set the other components of c to zero)
 • $c = a*b$ ------- store the cross product of a and b in c
 • $C = A*B$ ------- perform matrix multiplication of A and B
 • $v = M*x$ ------- perform the matrix-vector multiplication.
Some strict rules

• Attendance not mandatory, punctuality is, texting is forbidden
• No late HW assignments accepted, your printer or dog eating your HW is not an excuse…
• Demos start on-time (early), your responsibility to make it work (memory stick, etc)
• Absence from a demo receives a zero
• Lowest HW grade dropped, if you get all the HW’s in at the end of semester, except HW 1 and 2
• Exams: 8.5 x 11 sheet of paper, both sides, in your hand
• Cannot take this class if it overlaps with another
• Miscommunications must be cleared up before demo day
• Three strikes on mess
 – Strike 1: you lose your ability to drop the lowest HW score
 – Strike 2: your team gets 0’s
 – Strike 3: you are out of the class
Tuesdays/Thursdays

• Tuesdays are a must

• Thursdays “backup” day?
Meet the TA’s
Waitlist people

• Motivated students usually get in
What to Expect