Motivation for Studying Region-Based Analysis

- Exploit the structure of block-structured programs in data flow
- Tie in several concepts studied:
 - Use of structure in induction variables, loop invariant
 - motivated by nature of the problem
 - This lecture: can we use structure for speed?
 - Iterative algorithm for data flow
 - This lecture: on alternative algorithm
 - Reducibility
 - all retreating edges of DFST are back edges
 - reducible graphs converge quickly
 - This lecture: algorithm exploits & requires reducibility
- Usefulness in practice
 - Faster for “harder” analyses
 - Useful for analyses related to structure
- Theoretically interesting: better understanding of data flow

I. Basic Idea

Basic Idea

- In Iterative Analysis:
 - DEFINITION: Transfer function \(F_B \):
 summarize effect from beginning to end of basic block \(B \)
- In Region-Based Analysis:
 - DEFINITION: Transfer function \(F_{R,B} \):
 summarize effect from beginning of \(R \) to end of basic block \(B \)
 - Recursively construct a larger region \(R \) from smaller regions
 construct \(F_{R,B} \) from transfer functions for smaller regions
 until the program is one region
 - Let \(P \) be the region for the entire program,
 and \(v \) be initial value at entry node
 \[\text{out}(B) = F_B(v) \]
 \[\text{in}(B') = A_{B'} \cdot \text{out}(B') \], where \(B' \) is a predecessor of \(B \)
II. Algorithm

1. Operations on transfer functions
2. How to build nested regions?
3. How to construct transfer functions that correspond to the larger regions?

1. Operations on Transfer Functions

- Example: Reaching Definitions
 - $F(x) = \text{Gen} \cup (x - \text{Kill})$
 - $F_2(F_1(x)) = \text{Gen}_2 \cup (F_1(x) - \text{Kill}_2)$
 \[= \text{Gen}_2 \cup (\text{Gen}_1 \cup (x - \text{Kill}_1)) - \text{Kill}_2)\]
 - $F_1(x) \land F_2(x) = \text{Gen}_1 \cup (x - \text{Kill}_1) \cup \text{Gen}_2 \cup (x - \text{Kill}_2)$
 \[= (\text{Gen}_1 \cup \text{Gen}_2) \cup (x - (\text{Kill}_1 \cap \text{Kill}_2))\]

- $F^*(x) \leq F^n(x)$, $n \geq 0$
 \[= x \cup F(x) \cup F(F(x)) \cup ...\]
 \[= x \cup (\text{Gen} \cup (x - \text{Kill}) \cup (\text{Gen} \cup ((\text{Gen} \cup (x - \text{Kill}) - \text{Kill})) \cup ...\]
 \[= \text{Gen} \cup (x - \emptyset)\]

A region in a flow graph is a set of nodes that
- includes a header, which dominates all other nodes in a region

- T1-T2 rule (Hecht & Ullman)
 - T1: Remove a loop
 If n is a node with a loop, i.e. an edge $n \rightarrow n$, delete that edge

- T2: Remove a vertex
 If there is a node n that has a unique predecessor, m,
 then m may consume n by deleting n and making all successors of n be successors of m.

Example

- In reduced graph:
 - each vertex represents a subgraph of original graph (a region).
 - each edge represents an edge in original graph

- Limit flow graph: result of exhaustive application of T1 and T2
 - independent of order of application.
 - if limit flow graph has a single vertex reducible

- Can define larger regions (e.g. Allen&Cocke's intervals)
 - simple regions simple composition rules for transfer functions
Transfer function

- \(F_{R,B} \): summarizes the effect from beginning of \(R \) to end of \(B \)
- \(F_{R,H2} \): summarizes the effect from beginning of \(R \) to beginning of \(H2 \)
 - Unchanged for blocks \(B \) in region \(R \) if \(F_{R,B} = F_{R1,B} \)
 - \(F_{R,H2} = A \circ F_{R,B} \), where \(p \) is a predecessor of \(H \)
- For blocks \(B \) in region \(R \): \(F_{R,B} = F_{R2,B} \cdot F_{R1,in(H)} \)

\[F_{R,B} = \left(\wedge F_{R2,B} \right) \cdot F_{R1,in(H)} \]

\[F_{R,B} = F_{R1,B} \cdot F_{R2,in(H)} \]

\[F_{R,B} = F_{R1,B} \cdot F_{R2,in(H)} \]

\[F_{R,B} = F_{R1,B} \cdot F_{R2,in(H)} \]

- \(R \): region name
- \(R' \): region whose header will be subsumed
III. Complexity of Algorithm

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>B2</td>
<td>B3</td>
<td>B4</td>
<td>B5</td>
<td>B'1</td>
<td>B'2</td>
</tr>
<tr>
<td>R1</td>
<td>R2</td>
<td>R3</td>
<td>R4</td>
<td>R5</td>
<td>R'1</td>
<td>R'2</td>
</tr>
<tr>
<td>fB1</td>
<td>fB2</td>
<td>fB3</td>
<td>fB4</td>
<td>fB5</td>
<td>fR'1</td>
<td>fR'2</td>
</tr>
</tbody>
</table>

Optimization

- Let m = number of edges, n = number of nodes
- Ideas for optimization
 - If we compute F_{EA} for every region B is in, then it is very expensive
 - We are ultimately only interested in the entire region (E); we need to compute only F_{EA} for every B_i.
 - There are many common subexpressions between F_{EA} and F_{EB}...
 - Number of F_{EA} calculated = m
 - Also, we need to compute $F_{EA(B')}$ where B' represents the region whose header is subsumed.
 - Number of F_{EA} calculated, where B_i is not final = n
- Total number of F_{EA} calculated: $m + n$
 - Data structure keeps “header” relationship
 - Practical algorithm: $O(m \log n)$
 - Complexity: $O(m \alpha(m,n))$, α is inverse Ackermann function

IV. Comparison with Iterative Data Flow

- Applicability
 - Definitions of F^* can make technique more powerful than iterative algorithms
 - Backward flow: reverse graph is not typically reducible.
 - Requires more effort to adapt to backward flow than iterative algorithm
 - More important for interprocedural optimization
- Speed
 - Irreducible graphs
 - Iterative algorithm can process irreducible parts uniformly
 - Reducible graph & Cycles do not add information (common)
 - Iterative: $O(m + 2)$ passes
 - Depth is 2.75 average, independent of code length
 - Region-based analysis: Theoretically almost linear, typically $O(m \log n)$
 - Reducible & Cycles add information
 - Iterative takes longer to converge
 - Region-based analysis remains the same

Reducibility

- If no T_1, T_2 is applicable before graph is reduced to single node, then split node and continue
- Worst case: exponential
- Most graphs (including GOTO programs) are reducible