Lecture 11

Lazy Code Motion

I. Forms of redundancy (quick review)
 • global common subexpression elimination
 • loop invariant code motion
 • partial redundancy

II. Lazy Code Motion Algorithm
 • Mathematical concept: a cut set
 • Basic technique (anticipation)
 • 3 more passes to refine algorithm

Reading: Chapter 9.5
Overview

• Eliminates many forms of redundancy in one fell swoop

• Originally formulated as 1 bi-directional analysis

• Lazy code motion algorithm
 – formulated as 4 separate uni-directional passes
 • backward, forward, forward, backward
I. Common Subexpression Elimination

- A common expression may have different values on different paths!
- On every path reaching \(p \),
 - expression \(b+c \) has been computed
 - \(b, c \) not overwritten after the expression
Given an expression (b+c) inside a loop,

- does the value of b+c change inside the loop?
- is the code executed at least once?
• Can we place calculations of \(b+c\) such that no path re-executes the same expression

• **Partial Redundancy Elimination (PRE)**
 – subsumes:
 • global common subexpression (full redundancy)
 • loop invariant code motion (partial redundancy for loops)
II. Lazy Code Motion

• **Key observation:**
 – A bi-directional (!) data flow problem can be replaced with several unidirectional data flow problems \(\Rightarrow\) much easier
 – Better result as well!
Preparing the Flow Graph

- **Definition:** Critical edges
 - source basic block has multiple successors
 - destination basic block has multiple predecessors

- **Modify the flow graph:** (treat every statement as a basic block)
 - To keep algorithm simple: restrict placement of instructions to the beginning of a basic block
 - Add a basic block for every edge that leads to a basic block with multiple predecessors (not just on critical edges)
Full Redundancy: A Cut Set in a Graph

Key mathematical concept

- Full redundancy at p: expression a+b redundant on all paths
 - a cut set: nodes that separate entry from p
 - a cut set contains calculation of a+b
 - a, b, not redefined
Partial Redundancy: Completing a Cut Set

• **Partial redundancy at p:** redundant on some but not all paths
 – Add operations to create a cut set containing a+b
 – Note: Moving operations up can eliminate redundancy

• **Constraint on placement:** no wasted operation
 – a+b is “anticipated” at B if its value computed at B will be used along ALL subsequent paths
 – a, b not redefined, no branches that lead to exit without use

• **Range where a+b is anticipated → Choice**
Pass 1: Anticipated Expressions

This pass does most of the heavy lifting in eliminating redundancy

- **Backward pass**: Anticipated expressions

 Anticipated[b].in: Set of expressions anticipated at the entry of b

 - An expression is anticipated if its value computed at point p
 will be used along ALL subsequent paths

<table>
<thead>
<tr>
<th></th>
<th>Anticipated Expressions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain</td>
<td>Sets of expressions</td>
</tr>
<tr>
<td>Direction</td>
<td>backward</td>
</tr>
</tbody>
</table>
| **Transfer Function**| $f_b(x) = E\text{Use}_b \cup (x - E\text{Kill}_b)$
| | $E\text{Use}$: used exp, $E\text{Kill}$: exp killed |
| **Boundary** | \cap |
| **in[exit]** | \varnothing |
| **Initialization** | $\text{in}[b] = \{\text{all expressions}\}$ |
Examples (1)

See the algorithm in action

\[
x = a + b \\
y = a + b \\
z = a + b \\
r = a + b \\
a = 10
\]
Examples (2)

- Cannot eliminate all redundancy

```plaintext
z = a + b
x = a + b
```

Carnegie Mellon
15745: Lazy Code Motion
12
Todd C. Mowry
Examples (3)

• Do you know how the algorithm works without simulating it?
Pass 2: Place As Early As Possible

There is still some redundancy left!

- **First approximation:** frontier between “not anticipated” & “anticipated”
- **Complication:** anticipation may oscillate

- Pretend we calculate expression e whenever it is anticipated
- e will be **available at p** if e has been “anticipated but not subsequently killed” on all paths reaching p

<table>
<thead>
<tr>
<th>Available Expressions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain</td>
</tr>
<tr>
<td>Direction</td>
</tr>
<tr>
<td>Transfer Function</td>
</tr>
<tr>
<td>\wedge</td>
</tr>
<tr>
<td>Boundary</td>
</tr>
<tr>
<td>Initialization</td>
</tr>
</tbody>
</table>
Early Placement

- **earliest(b)**
 - set of expressions added to block b under early placement

- **Place expression at the earliest point anticipated and not already available**
 - earliest(b) = anticipated[b].in - available[b].in

- **Algorithm**
 - For all basic block b, if \(x+y \in \text{earliest}[b]\)
 - at beginning of b:
 - create a new variable \(t\)
 - \(t = x+y\),
 - replace every original \(x+y\) by \(t\)
Pass 3: Lazy Code Motion

Let’s be lazy without introducing redundancy.

• Delay creating redundancy to reduce register pressure

• An expression e is **postponable** at a program point p if
 – all paths leading to p have seen the earliest placement of e but not a subsequent use

<table>
<thead>
<tr>
<th>Postponable Expressions</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain</td>
<td>Sets of expressions</td>
</tr>
<tr>
<td>Direction</td>
<td>forward</td>
</tr>
<tr>
<td>Transfer Function</td>
<td>$f_b(x) = (\text{earliest}[b] \cup x) - \text{EUse}_b$</td>
</tr>
<tr>
<td>\wedge</td>
<td>\cap</td>
</tr>
<tr>
<td>Boundary</td>
<td>out[entry] = \emptyset</td>
</tr>
<tr>
<td>Initialization</td>
<td>out[b] = {all expressions}</td>
</tr>
</tbody>
</table>
Latest: frontier at the end of “postponable” cut set

- \(\text{latest}[b] = (\text{earliest}[b] \cup \text{postponable.in}[b]) \cap (E\text{Use}_b \cup \neg (\bigcap_{s \in \text{succ}[b]} (\text{earliest}[s] \cup \text{postponable.in}[s]))) \)
 - OK to place expression: earliest or postponable
 - Need to place at \(b \) if either
 - used in \(b \), or
 - not OK to place in one of its successors

- Works because of pre-processing step (an empty block was introduced to an edge if the destination has multiple predecessors)
 - if \(b \) has a successor that cannot accept postponement, \(b \) has only one successor
 - The following does not exist:
Pass 4: Cleaning Up

Finally... this is easy, it is like liveness

\[
x = a + b
\]

not used afterwards

- Eliminate temporary variable assignments unused beyond current block
- Compute: \texttt{Used.out}[b]: sets of \textit{used (live) expressions} at exit of b.

<table>
<thead>
<tr>
<th>Domain</th>
<th>Sets of expressions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direction</td>
<td>backward</td>
</tr>
<tr>
<td>Transfer Function</td>
<td>(f_b(x) = (EUse[b] \cup x) - \text{latest}[b])</td>
</tr>
<tr>
<td>Boundary</td>
<td>(\text{in}[\text{exit}] = \emptyset)</td>
</tr>
<tr>
<td>Initialization</td>
<td>(\text{in}[b] = \emptyset)</td>
</tr>
</tbody>
</table>
Code Transformation

- For all basic blocks b,

 if \((x+y) \in (\text{latest}[b] \cap \text{used.out}[b])\)

 at beginning of b:

 add new \(t = x+y\)

 replace every original \(x+y\) by \(t\)
4 Passes for Partial Redundancy Elimination

• **Heavy lifting:** Cannot introduce operations not executed originally
 – Pass 1 (backward): Anticipation: range of code motion
 – Placing operations at the frontier of anticipation gets most of the redundancy

• **Squeezing the last drop of redundancy:**
 An anticipation frontier may cover a subsequent frontier
 – Pass 2 (forward): Availability
 – Earliest: anticipated, but not yet available

• **Push the cut set out -- as late as possible**
 To minimize register lifetimes
 – Pass 3 (forward): Postponability: move it down provided it does not create redundancy
 – Latest: where it is used or the frontier of postponability

• **Cleaning up**
 – Pass 4: Remove temporary assignment
Remarks

• Powerful algorithm
 – Finds many forms of redundancy in one unified framework

• Illustrates the power of data flow
 – Multiple data flow problems