Lecture 10

Partial Redundancy Elimination

• Global code motion optimization
 • Remove partially redundant expressions
 • Loop invariant code motion
 • Can be extended to do Strength Reduction

• No loop analysis needed
• Bidirectional flow problem
References

Redundancy

• A Common Subexpression is a Redundant Computation

\[t_1 = a + b \]

\[t_2 = a + b \]

\[t_3 = a + b \]

• Occurrence of expression E at P is redundant if E is available there:
 – E is evaluated along every path to P, with no operands redefined since.
• Redundant expression can be eliminated
Partial Redundancy

- Partially Redundant Computation

\[t_1 = a + b \]

- Occurrence of expression E at P is **partially redundant** if E is **partially available** there:
 - E is evaluated along at least one path to P, with no operands redefined since.
- Partially redundant expression can be eliminated if we can insert computations to make it **fully redundant**.
Loop Invariants are Partial Redundancies

- Loop invariant expression is partially redundant

\[
\begin{align*}
a &= \ldots \\
t_1 &= a + b
\end{align*}
\]

- As before, partially redundant computation can be eliminated if we insert computations to make it fully redundant.
- Remaining copies can be eliminated through copy propagation or more complex analysis of partially redundant assignments.
Partial Redundancy Elimination

• The Method:
 1. Insert Computations to make partially redundant expression(s) fully redundant.
 2. Eliminate redundant expression(s).

• Issues [Outline of Lecture]:
 1. What expression occurrences are candidates for elimination?
 2. Where can we safely insert computations?
 3. Where do we want to insert them?

• For this lecture, we assume one expression of interest, a+b.
 – In practice, with some restrictions, can do many expressions in parallel.
Which Occurrences Might Be Eliminated?

• In CSE,
 – E is available at P if it is previously evaluated along every path to P, with no subsequent redefinitions of operands.
 – If so, we can eliminate computation at P.

• In PRE,
 – E is partially available at P if it is previously evaluated along at least one path to P, with no subsequent redefinitions of operands.
 – If so, we might be able to eliminate computation at P, if we can insert computations to make it fully redundant.

• Occurrences of E where E is partially available are candidates for elimination.
Finding Partially Available Expressions

- **Forward flow problem**
 - Lattice = \{ 0, 1 \}, meet is union (\(\cup \)), Top = 0 (not PAVAIL), entry = 0

 - PAVOUT[i] = (PAVIN[i] – KILL[i]) \(\cup \) AVLOC[i]

 - PAVIN[i] = \(\begin{cases}
 0 & i = \text{entry} \\
 \bigcup_{p \in \text{preds}(i)} \text{PAVOUT}[p] & \text{otherwise}
 \end{cases} \)

- **For a block,**
 - Expression is **locally available** (AVLOC) if downwards exposed.
 - Expression is killed (KILL) if any assignments to operands.
Partial Availability Example

- For expression $a+b$.

\[
\begin{align*}
\text{KILL} &= 1 & \text{PAVIN} &= \\
\text{AVLOC} &= 0 & \text{PAVOUT} &= \\
\text{KILL} &= 0 & \text{PAVIN} &= \\
\text{AVLOC} &= 1 & \text{PAVOUT} &= \\
\text{KILL} &= 1 & \text{PAVIN} &= \\
\text{AVLOC} &= 1 & \text{PAVOUT} &= \\
\end{align*}
\]

- Occurrence in loop is partially redundant.
Where Can We Insert Computations?

- **Safety**: never introduce a new expression along any path.

 - Insertion could introduce exception, change program behavior.
 - If we can add a new basic block, can insert safely in most cases.
 - Solution: insert expression only where it is anticipated.

- **Performance**: never increase the # of computations on any path.

 - Under simple model, guarantees program won’t get worse.
 - Reality: might increase register lifetimes, add copies, lose.
Finding Anticipated Expressions

- **Backward flow problem**
 - Lattice = { 0, 1 }, meet is intersection (\(\cap\)), top = 1 (ANT), exit = 0

 - \(\text{ANTIN}[i] = \text{ANTLOC}[i] \cup (\text{ANTOUT}[i] - \text{KILL}[i])\)

 - \(\text{ANTOUT}[i] = \begin{cases} 0 & i = \text{exit} \\ \bigcap_{s \in \text{succ}(i)} \text{ANTIN}[s] & \text{otherwise} \end{cases}\)

- **For a block,**
 - Expression **locally anticipated** (ANTLOC) if upwards exposed.

\[
\begin{align*}
a &= \ldots \\
\ldots &= a + b
\end{align*}
\]

\[
\begin{align*}
\ldots &= a + b \\
a &= \ldots
\end{align*}
\]
Anticipation Example

• For expression $a+b$.

- $t_1 = a + b$
 - $KILL = 1$ $ANTIN = $
 - $ANTLOC = 0$ $ANTOUT = $

- $t_2 = a + b$
 - $KILL = 0$ $ANTIN = $
 - $ANTLOC = 1$ $ANTOUT = $

- $a = ...$
 - $KILL = 1$ $ANTIN = $
 - $ANTLOC = 0$ $ANTOUT = $

• Expression is anticipated at end of first block.
• Computation may be safely inserted there.
Where Do We Want to Insert Computations?

- **Morel-Renvoise and variants:** “*Placement Possible*”
 - Dataflow analysis shows where to insert:
 - **PPIN** = “Placement possible at entry of block or before.”
 - **PPOUT** = “Placement possible at exit of block or before.”
 - Insert at *earliest place where PP = 1*.
 - Only place at end of blocks,
 - **PPIN** really means “*Placement possible or not necessary* in each predecessor block.”
 - Don’t need to insert where expression is already available.

 - **INSERT**[i] = **PPOUT**[i] \(\cap (\neg \text{PPIN}[i] \cup \text{KILL}[i]) \cap \neg \text{AVOUT}[i] \)

- Remove (upwards-exposed) computations where PPIN=1.
 - **DELETE**[i] = **PPIN**[i] \(\cap \text{ANTLOC}[i] \)
Where Do We Want to Insert? Example

\[
\begin{align*}
a &= \ldots \\
t_1 &= a + b \\
a &= \ldots \\
t_2 &= a + b
\end{align*}
\]

PPIN =

PPOUT =

PPIN =

PPOUT =

PPIN =

PPOUT =

PPIN =

PPOUT =

PPIN =

PPOUT =
Formulating the Problem

• **PPOUT**: we want to place at output of this block only if
 – we want to place at entry of all successors

• **PPIN**: we want to place at input of this block only if (all of):
 – we have a local computation to place, or a placement at the end of this block which we can move up
 – we want to move computation to output of all predecessors where expression is not already available (don’t insert at input)
 – we can gain something by placing it here (**PAVIN**)

• **Forward or Backward?**
 – **BOTH**!

• **Problem is bidirectional**, but lattice \{0, 1\} is finite, so
 – as long as transfer functions are **monotone**, it converges.
Computing “Placement Possible”

• **PPOUT**: we want to place at output of this block only if
 – we want to place at entry of all successors

 \[\text{PPOUT}[i] = \begin{cases} 0 & i = \text{entry} \\ \bigcap_{s \in \text{succ}(i)} \text{PPIN}[s] & \text{otherwise} \end{cases} \]

• **PPIN**: we want to place at start of this block only if (all of):
 – we have a local computation to place, or a placement at the end of this block which we can move up
 – we want to move computation to output of all predecessors where expression is not already available (don’t insert at input)
 – we gain something by moving it up (PAVIN heuristic)

 \[\text{PPIN}[i] = \begin{cases} 0 & i = \text{exit} \\ \bigcap_{p \in \text{preds}(i)} ((\text{ANTLOC}[i] \cup (\text{PPOUT}[i] - \text{KILL}[i]))) \bigcap \bigcup_{p \in \text{preds}(i)} ((\text{PPOUT}[p] \cup \text{AVOUT}[p]) \bigcap \text{PAVIN}[i]) & \text{otherwise} \end{cases} \]
“Placement Possible” Example 1

\[t_1 = a + b \]

- KILL = 1
- AVLOC = 0
- ANTLOC = 0

\[t_2 = a + b \]

- KILL = 0
- AVLOC = 1
- ANTLOC = 1

\[a = \ldots \]

- KILL = 1
- AVLOC = 1
- ANTLOC = 0

\[a = \ldots \]

- KILL = 1
- AVLOC = 1
- ANTLOC = 0
“Placement Possible” Example 2

\[
a = \ldots
\]

\[
t_1 = a + b
\]

\[
a = \ldots
\]

\[
t_2 = a + b
\]

KILL = 1
AVLOC = 1
ANTLOC = 0
KILL = 1
AVLOC = 0
ANTLOC = 0
KILL = 0
AVLOC = 1
ANTLOC = 1
KILL = 1
AVLOC = 1
ANTLOC = 1

PAVIN = 0
PAVOUT = 1
AVOUT = 1
PPIN =
PPOUT =

PAVIN = 0
PAVOUT = 0
AVOUT = 0
PPIN =
PPOUT =

PAVIN = 1
PAVOUT = 1
AVOUT = 1
PPIN =
PPOUT =

PAVIN = 0
PAVOUT = 0
AVOUT = 0
PPIN =
PPOUT =

PAVIN = 1
PAVOUT = 1
AVOUT = 1
PPIN =
PPOUT =
“Placement Possible” Correctness

- **Convergence** of analysis: transfer functions are monotone.
- **Safety**: Insert only if anticipated.

\[PPIN[i] \subseteq (PPOUT[i] - KILL[i]) \cup ANTLOC[i] \]

\[
PPOUT[i] = \begin{cases}
0 & i = \text{exit} \\
\bigcap_{s \in \text{succ}(i)} PPIN[s] & \text{otherwise}
\end{cases}
\]

- **INSERT** \(\subseteq \) **PPOUT** \(\subseteq \) **ANTOUT**, so insertion is safe.

- **Performance**: never increase the # of computations on any path
 - **DELETE** = **PPIN** \(\cap \) **ANTLOC**
 - On every path from an INSERT, there is a DELETE.
 - The number of computations on a path does not increase.
Morel-Renvoise Limitations

• Movement usefulness tied to PAVIN heuristic
 – Makes some useless moves, might increase register lifetimes:

 ![Diagram](a+b) → ![Diagram](a+b)

 ![Diagram](a+b)

 – Doesn’t find some eliminations:

 ![Diagram](a+b) → ![Diagram](a+b) → ![Diagram](a+b) → ![Diagram](a+b)

• Bidirectional data flow difficult to compute.
Related Work

• Don’t need heuristic
 – Dhamdhere, Drechsler-Stadel, Knoop, et.al.
 – use restricted flow graph or allow edge placements.

• Data flow can be separated into unidirectional passes
 – Dhamdhere, Knoop, et. al.

• Improvement still tied to accuracy of computational model
 – Assumes performance depends only on the number of computations along any path.
 – Ignores resource constraint issues: register allocation, etc.
 – Knoop, et.al. give “earliest” and “latest” placement algorithms which begin to address this.

• Further issues:
 – more than one expression at once, strength reduction, redundant assignments, redundant stores.