The exam is closed book, closed notes. Most of the questions on the exam will be short-answer questions. Regarding the material that will be covered in the exam, the lectures have been broken down into the following three categories:

1. **Lectures that may be covered in depth:**
 - Lecture 2: Local Optimizations
 - Lecture 4: Data Flow Analysis: Examples
 - Lecture 5: Data Flow Analysis: Theory
 - Lecture 7: Common Subexpressions, Constant Folding
 - Lecture 8: Loop Invariant Code Motion
 - Lecture 10: Partial Redundancy Elimination
 - Lecture 14: SSA-Style Optimizations
 - Lecture 15: Register Allocation: Coloring and Spilling
 - Lecture 18: List Scheduling, Global Scheduling
 - Note: only list scheduling may be covered in depth (not global scheduling).
 - Lecture 20: Pointer Analysis
 - Lecture 25: Memory Hierarchy Optimizations
 - Lecture 28: Array Dependence Analysis

2. **Lectures where you may see one or two high-level questions** *(to demonstrate that you understood some of the key high-level points of the lecture):*
 - Lecture 9: Induction Variables, Strength Reduction
 - Lecture 11: Lazy Code Motion
 - Lecture 12: Region-Based Analysis
 - Lecture 13: Intro to Static Single Assignment (SSA)
 - Lecture 16: Register Allocation: Coalescing
 - Lecture 17: Intro to Instruction Scheduling
 - Lecture 19: Software Pipelining
 - Lecture 26: Prefetching Arrays
 - Lecture 27: Prefetching Pointer-Based Structures

3. **Lectures that will not be covered on the exam:**
 - Lecture 1: Overview of Optimizations
 - Lecture 3: The LLVM Compiler: Getting Started
 - Lecture 6: The LLVM Compiler: Further Details
 - Lecture 21: Dynamic Code Optimization
• Lecture 22: Recent Research on Optimization I
• Lecture 23: Recent Research on Optimization II
• Lecture 24: Recent Research on Optimization III
• Lecture 29: Thread-Level Speculation