Data Dependence, Parallelization, and Locality Enhancement

(courtesy of Tarek Abdelrahman, University of Toronto)

We define four types of data dependence.

- **Flow (true) dependence:** a statement S_i precedes a statement S_j in execution and S_i computes a data value that S_j uses.
 - It implies that S_i must execute before S_j.

- **Anti dependence:** a statement S_i precedes a statement S_j in execution and S_i uses a data value that S_j computes.
 - It implies that S_i must be executed before S_j.

- **Output dependence:** a statement S_i precedes a statement S_j in execution and S_i computes a data value that S_j also computes.
 - It implies that S_i must be executed before S_j.

\begin{align*}
S_1 & : A = 1.0 \\
S_2 & : B = A + 2.0 \\
S_3 & : A = C - D \\
\vdots & \\
S_k & : A = B / C
\end{align*}

\begin{align*}
S_1 & : A = 1.0 \\
S_2 & : B = A + 2.0 \\
S_3 & : A = C - D \\
\vdots & \\
S_k & : A = B / C
\end{align*}

We define four types of data dependence.
Data Dependence

\[S_i : \quad A = 1.0 \]
\[S_2 : \quad B = A + 2.0 \]
\[S_3 : \quad A = C - D \]
\[S_4 : \quad A = B/C \]

We define four types of data dependence.

- **Input dependence**: a statement \(S_i \) precedes a statement \(S_j \) in execution and \(S_i \) uses a data value that \(S_j \) also uses.
- Does this imply that \(S_i \) must execute before \(S_j \)?

\[S_i \delta S_j \quad (S_i \delta S_j) \]

Data Dependence (continued)

- The dependence is said to **flow** from \(S_i \) to \(S_j \) because \(S_i \) precedes \(S_j \) in execution.
- \(S_i \) is said to be the **source** of the dependence. \(S_j \) is said to be the **sink** of the dependence.
- The only "true" dependence is flow dependence; it represents the flow of data in the program.
- The other types of dependence are caused by programming style; they may be eliminated by re-naming.

\[S_1 : \quad A = 1.0 \]
\[S_2 : \quad B = A + 2.0 \]
\[S_3 : \quad A = C - D \]
\[S_4 : \quad A = B/C \]

Data Dependence (continued)

- Data dependence in a program may be represented using a dependence graph \(G=(V,E) \), where the nodes \(V \) represent statements in the program and the directed edges \(E \) represent dependence relations.

\[S_1 : \quad A = 1.0 \]
\[S_2 : \quad B = A + 2.0 \]
\[S_3 : \quad A = C - D \]
\[S_4 : \quad A = B/C \]

Value or Location?

- There are two ways a dependence is defined: **value-oriented** or **location-oriented**.

\[S_1 : \quad A = 1.0 \]
\[S_2 : \quad B = A + 2.0 \]
\[S_3 : \quad A = C - D \]
\[S_4 : \quad A = B/C \]
Example 1

\[\text{do } i = 2, 4 \]
\[\quad S_1: a(i) = b(i) + c(i) \]
\[\quad \vdots \]
\[\quad S_2: d(i) = a(i) \]
\[\text{end do} \]

- There is an instance of \(S_1 \) that precedes an instance of \(S_2 \) in execution and \(S_1 \) produces data that \(S_2 \) consumes.
- \(S_1 \) is the source of the dependence; \(S_2 \) is the sink of the dependence.
- The dependence flows between instances of statements in the same iteration (loop-independent dependence).
- The number of iterations between source and sink (dependence distance) is 0. The dependence direction is =.

Example 2

\[\text{do } i = 2, 4 \]
\[\quad S_1: a(i) = b(i) + c(i) \]
\[\quad \vdots \]
\[\quad S_2: d(i) = a(i-1) \]
\[\text{end do} \]

- There is an instance of \(S_1 \) that precedes an instance of \(S_2 \) in execution and \(S_1 \) produces data that \(S_2 \) consumes.
- \(S_1 \) is the source of the dependence; \(S_2 \) is the sink of the dependence.
- The dependence flows between instances of statements in different iterations (loop-carried dependence).
- The dependence distance is 1. The direction is positive (<).

Example 3

\[\text{do } i = 2, 4 \]
\[\quad S_1: a(i) = b(i) + c(i) \]
\[\quad \vdots \]
\[\quad S_2: d(i) = a(i+1) \]
\[\text{end do} \]

- There is an instance of \(S_2 \) that precedes an instance of \(S_1 \) in execution and \(S_2 \) consumes data that \(S_1 \) produces.
- \(S_2 \) is the source of the dependence; \(S_1 \) is the sink of the dependence.
- The dependence is loop-carried.
- The dependence distance is 1.
- \[S_2 \delta^i S_1 \quad \text{or} \quad S_1 \delta^i S_2 \]

Example 4

\[\text{do } i = 2, 4 \]
\[\quad \text{do } j = 2, 4 \]
\[\quad S: a(i,j) = a(i-1,j+1) \]
\[\text{end do} \]
\[\text{end do} \]

- An instance of \(S \) precedes another instance of \(S \) and \(S \) produces data that \(S \) consumes.
- \(S \) is both source and sink.
- The dependence is loop-carried.
- The dependence distance is \((1,-1)\).
- \[S \delta^i_{(1,-1)} S \quad \text{or} \quad S \delta^i_{(-1,1)} S \]
Problem Formulation

- Consider the following perfect nest of depth d:

\[
\begin{align*}
\text{do } i_1 = L_{i_1}, U_{i_1} \\
\text{do } i_2 = L_{i_2}, U_{i_2} \\
\quad \text{do } i_d = L_{i_d}, U_{i_d} \\
\quad \quad \text{do } j = L_j, U_j \\
\quad \quad \quad \text{do } k = L_k, U_k \\
\quad \quad \quad \quad a(f(I)), I(a(f(I))) = \ldots \\
\quad \quad \quad \quad \ldots = a(g(I)), I(a(g(I))) \\
\quad \quad \quad \quad \text{endo} \\
\quad \quad \quad \text{endo} \\
\quad \quad \text{endo} \\
\quad \text{endo} \\
\text{endo} \\
\text{endo} \\
\text{endo} \\
\end{align*}
\]

- That is:

\[
\begin{align*}
f_i(k) &= g_i(j) \\
f_2(k) &= g_2(j) \\
\vdots \\
f_m(k) &= g_m(j) \\
\end{align*}
\]

Does there exist two iteration vectors \(i_1 \) and \(i_2 \), such that

\[
2 \leq i_1 \leq i_2 \leq 4 \text{ and such that:}
\]

- \(i_1 = i_2 - 1? \)
- Answer: yes; \(i_1 = 2 \) & \(i_2 = 3 \) and \(i_1 = 3 \) & \(i_2 = 4 \).
- Hence, there is dependence!
- The dependence distance vector is \(i_2 - i_1 = 1 \).
- The dependence direction vector is sign(1) = <.

Problem Formulation - Example

- Do i = 2, 4
 \[
 \begin{align*}
 S_1: & \quad a(i) = b(i) + c(i) \\
 S_2: & \quad d(i) = d(i-1)
 \end{align*}
 \]

- Does there exist two iteration vectors \(i_1 \) and \(i_2 \), such that

\[
2 \leq i_1 \leq i_2 \leq 4 \text{ and such that:}
\]

- \(i_1 = i_2 + 1? \)
- Answer: yes; \(i_1 = 3 \) & \(i_2 = 2 \) and \(i_1 = 4 \) & \(i_2 = 3 \). (But, but!).
- Hence, there is dependence!
- The dependence distance vector is \(i_2 - i_1 = -1 \).
- The dependence direction vector is sign(-1) = >.
- Is this possible?
Problem Formulation - Example

\[
\begin{align*}
do & \ i = 1, 10 \\
S_1: & \ 2i^2 = b(i) + c(i) \\
S_2: & \ d(i) = a(2i+1) \\
\text{end do}
\end{align*}
\]

- Does there exist two iteration vectors \(i_1 \) and \(i_2 \), such that \(1 \leq i_1 \leq i_2 \leq 10 \) and such that:
 \[2i_1 = 2i_2 + 1? \]
 - Answer: no; \(2i_1 \) is even & \(2i_2 + 1 \) is odd.
 - Hence, there is no dependence!

Problem Formulation

- Dependence testing is equivalent to an integer linear programming (ILP) problem of \(2d \) variables & \(m+d \) constraint!
 - An algorithm that determines if there exits two iteration vectors \(k \) and \(j \) that satisfies these constraints is called a dependence tester.
 - The dependence distance vector is given by \(j - k \).
 - The dependence direction vector is given by \(\text{sign}(j - k) \).
 - Dependence testing is NP-complete!
 - A dependence test that reports dependence only when there is dependence is said to be exact. Otherwise it is in-exact.
 - A dependence test must be conservative; if the existence of dependence cannot be ascertained, dependence must be assumed.

Dependence Testers

- Lamport's Test.
- GCD Test.
- Banerjee's Inequalities.
- Generalized GCD Test.
- Power Test.
- I-Test.
- Omega Test.
- Delta Test.
- Stanford Test.
- etc...

Lamport's Test

- Lamport's Test is used when there is a single index variable in the subscript expressions, and when the coefficients of the index variable in both expressions are the same.
 \[
 A(\ldots, b^{*}i + c_1, \ldots) = \ldots \\
 \ldots = A(\ldots, b^{*}i + c_2, \ldots)
 \]
 - The dependence problem: does there exist \(i_1 \) and \(i_2 \), such that \(L_i \leq i_1 \leq i_2 \leq U_i \), and such that
 \[b^{*}i_1 + c_1 = b^{*}i_2 + c_2 \quad \text{or} \quad i_2 - i_1 = \frac{c_1 - c_2}{b} ? \]
 - There is integer solution if and only if \(\frac{c_1 - c_2}{b} \) is integer.
 - The dependence distance is \(d = \frac{c_1 - c_2}{b} \) if \(L_i \leq |d| \leq U_i \).
 - \(d > 0 \) \(\Rightarrow \) true dependence.
 - \(d = 0 \) \(\Rightarrow \) loop independent dependence.
 - \(d < 0 \) \(\Rightarrow \) anti dependence.
Lamport's Test - Example

\[
\begin{align*}
d & \text{do } i = 1, n \\
d & \text{do } j = 1, n \\
S & : a(i, j) = a(i-1, j+1) \\
& \text{end do} \\
& \text{end do}
\end{align*}
\]

- \(i_1 = i_2 - 1? \)
- \(b = 1; c_1 = 0; c_2 = -1 \)
- \(c_1 - c_2 = 1 \)
- \(b \)
- There is dependence.
- Distance (i) is 1.

\[
\begin{align*}
d & \text{do } i = 1, n \\
d & \text{do } j = 1, n \\
S & : a(2i, j) = a(i-1, 2j+1) \\
& \text{end do} \\
& \text{end do}
\end{align*}
\]

- \(j_1 = j_2 + 1? \)
- \(b = 1; c_1 = 0; c_2 = 1 \)
- \(c_1 - c_2 = 1 \)
- \(b \)
- There is no dependence.
- Distance (j) is -1.

GCD Test

- Given the following equation:
 \[
 \sum_{i=1}^{n} a_i x_i = c
 \]
 \(a_i \)'s and c are integers

 an integer solution exists if and only if:
 \[
gcd(a_1, a_2, \cdots, a_n) \text{ divides } c
 \]

- Problems:
 - ignores loop bounds.
 - gives no information on distance or direction of dependence.
 - often gcd(\(\cdots \)) is 1 which always divides c, resulting in false dependences.

GCD Test - Example

\[
\begin{align*}
d & \text{do } i = 1, 10 \\
S & : a(2^i) = b(i) + c(i) \\
S_2 & : d(i) = a(2^i-1) \\
& \text{end do}
\end{align*}
\]

- Does there exist two iteration vectors \(i_1 \) and \(i_2 \), such that
 \(1 \leq i_1 \leq i_2 \leq 10 \) and such that:
 \[
 2^i_1 = 2^i_2 - 1? \\
 \text{or} \\
 2^i_2 - 2^i_1 = 1?
 \]

- There will be an integer solution if and only if gcd(2, -2)
 divides 1.

- This is not the case, and hence, there is no dependence!
GCD Test Example

```
do i = 1, 10
S1: a(i) = b(i) + c(i)
S2: d(i) = a(i-100)
end do
```

- Does there exist two iteration vectors \(i_1 \) and \(i_2 \), such that
 \(1 \leq i_1 \leq i_2 \leq 10 \) and such that:
 \(i_1 = i_2 - 100 ? \)
 or \(i_2 - i_1 = 100 ? \)
- There will be an integer solution if and only if \(\text{gcd}(1, -1) \) divides 100.
- This is the case, and hence, there is dependence! Or is there?

Dependence Testing Complications

- **Unknown loop bounds.**
  ```
  do i = 1, N
  S1: a(i) = a(i+10)
  end do
  ```
 What is the relationship between \(N \) and 10?

- **Triangular loops.**
  ```
  do i = 1, N
  do j = 1, i-1
  S: a(i, j) = a(j, i)
  end do
  end do
  ```
 Must impose \(j < i \) as an additional constraint.

More Complications

- **User variables.**
  ```
  do i = 1, 10
  S1: a(i) = a(i+k)
  end do
  ```
 Some problem as unknown loop bounds, but occur due to some loop transformations (e.g., normalization).

- **Scalars.**
  ```
  do i = 1, N
  S1: x(i) = a(i)
  S2: b(i) = x
  end do
  ```
  ```
  do i = 1, N
  S1: a(i) = a(N-i)
  end do
  ```
  ```
  sum = 0
  do i = 1, N
  S1: sum = sum + a(i)
  end do
  ```
  ```
  do i = 1, N
  S1: sum += sum + a(i)
  sum += sum(i)
  ```
  ```
  do i = 1, N
  S1: x(i) = a(i)
  S2: b(i) = x
  end do
  ```
 Must impose \(j < i \) as an additional constraint.

More Complications

- **User variables.**
  ```
  do i = 1, 10
  S1: a(i) = a(i+k)
  end do
  ```
 Some problem as unknown loop bounds, but occur due to some loop transformations (e.g., normalization).

- **Scalars.**
  ```
  do i = 1, N
  S1: x(i) = a(i)
  S2: b(i) = x
  end do
  ```
  ```
  do i = 1, N
  S1: a(i) = a(N-i)
  end do
  ```
  ```
  sum = 0
  do i = 1, N
  S1: sum = sum + a(i)
  end do
  ```
  ```
  do i = 1, N
  S1: sum += sum + a(i)
  sum += sum(i)
  ```
  ```
  do i = 1, N
  S1: x(i) = a(i)
  S2: b(i) = x
  end do
  ```
 Must impose \(j < i \) as an additional constraint.
Serious Complications

- **Aliases.**
 - Equivalence Statements in Fortran:

    ```fortran
    real a(10,10), b(10)
    makes b the same as the first column of a.
    ```
 - Common blocks: Fortran's way of having shared/global variables.
    ```fortran
    common /shared/a,b,c
    subroutine foo (...) common /shared/a,b,c
    common /shared/x,y,z
    ```

Loop Parallelization

- A dependence is said to be *carried* by a loop if the loop is the outmost loop whose removal eliminates the dependence. If a dependence is not carried by the loop, it is *loop-independent*.

```fortran
do i = 2, n-1
  do j = 2, m-1
    a(i, j) = ...
    ... = a(i, j)
    b(i, j) = ...
    ... = b(i, j-1)
    c(i, j) = ...
    ... = c(i-1, j)
  end do
end do
```
Loop Parallelization

A dependence is said to be carried by a loop if the loop is the outmost loop whose removal eliminates the dependence. If a dependence is not carried by the loop, it is loop-independent.

do i = 2, n-1
 do j = 2, m-1
 a(i, j) = ... = a(i, j)
 b(i, j) = ... = b(i, j-1)
 c(i, j) = ... = c(i-1, j)
 end do
end do

The iterations of a loop may be executed in parallel with one another if and only if no dependences are carried by the loop!

Iterations of loop \(j \) must be executed sequentially, but the iterations of loop \(i \) may be executed in parallel.

Outer loop parallelism.
Loop Parallelization - Example

- Iterations of loop i must be executed sequentially, but the iterations of loop j may be executed in parallel.
- Inner loop parallelism.

Loop Interchange

Loop interchange changes the order of the loops to improve the spatial locality of a program.
Loop Interchange

Loop interchange can improve the granularity of parallelism!

\[
\begin{align*}
&\text{do } i = 1, n \\
&\quad \text{do } j = 1, n \\
&\quad \quad a(i,j) = b(i,j) \\
&\quad \quad c(i,j) = a(i-1,j) \\
&\quad \text{end do} \\
&\text{end do}
\end{align*}
\]

- When is loop interchange legal?
Loop Interchange

\[
\begin{align*}
d & = 1, n \\
j & = 1, n \\
\text{... } a(i,j) \\
\text{... } & \\
\text{end do} \\
\text{end do}
\end{align*}
\]

When is loop interchange legal? when the "interchanged" dependences remain lexiographically positive!

Loop Blocking (Loop Tiling)
Exploits temporal locality in a loop nest.

\[
\begin{align*}
d & = 1, T \\
i & = 1, n \\
j & = 1, n \\
\text{... } a(i,j) \\
\text{... } & \\
\text{end do} \\
\text{end do}
\end{align*}
\]
Loop Blocking (Loop Tiling)
Exploits temporal locality in a loop nest.

\[\text{do ic = 1, n, B} \]
\[\text{do jc = 1, n, B} \]
\[\text{do } t = 1, T \]
\[\text{do } i = 1, B \]
\[\text{do } j = 1, B \]
\[\ldots a(i(i-1), j(c+j-1)) \]
\[\text{end do} \]
\[\text{end do} \]
\[B: \text{ Block size} \]

When is loop blocking legal?