Data Dependence, Parallelization, and Locality Enhancement

(courtesy of Tarek Abdelrahman, University of Toronto)
Data Dependence

\[S_1 : \quad A = 1.0 \]
\[S_2 : \quad B = A + 2.0 \]
\[S_3 : \quad A = C - D \]
\[\vdots \]
\[S_4 : \quad A = B/C \]

We define four types of data dependence.

- **Flow (true) dependence**: a statement \(S_i \) precedes a statement \(S_j \) in execution and \(S_i \) computes a data value that \(S_j \) uses.

- **Implies that** \(S_i \) **must execute before** \(S_j \).

\[S_i \delta^+ S_j \quad (S_1 \delta^+ S_2 \quad \text{and} \quad S_2 \delta^+ S_4) \]
Data Dependence

\[S_1 : \quad A = 1.0 \]
\[S_2 : \quad B = A + 2.0 \]
\[S_3 : \quad A = C - D \]
\[\vdots \]
\[S_4 : \quad A = B/C \]

We define four types of data dependence.

- **Anti dependence**: a statement \(S_i \) precedes a statement \(S_j \) in execution and \(S_i \) uses a data value that \(S_j \) computes.

- It implies that \(S_i \) must be executed before \(S_j \).

\[S_i \delta^a S_j \quad (S_2 \delta^a S_3) \]
Data Dependence

\[
S_1 : \quad A = 1.0 \\
S_2 : \quad B = A + 2.0 \\
S_3 : \quad A = C - D \\
\vdots \\
S_4 : \quad A = B/C
\]

We define four types of data dependence.

- **Output dependence**: a statement \(S_i \) precedes a statement \(S_j \) in execution and \(S_i \) computes a data value that \(S_j \) also computes.

- It implies that \(S_i \) must be executed before \(S_j \).

\[
S_i \delta^o S_j \quad (S_1 \delta^o S_3 \quad \text{and} \quad S_3 \delta^o S_4)
\]
Data Dependence

\[
S_1 : \quad A = 1.0 \\
S_2 : \quad B = A + 2.0 \\
S_3 : \quad A = C - D \\
\vdots \\
S_4 : \quad A = B/C
\]

We define four types of data dependence.

- **Input dependence**: a statement \(S_i \) precedes a statement \(S_j \) in execution and \(S_i \) uses a data value that \(S_j \) also uses.

- **Does this imply that \(S_i \) must execute before \(S_j \)?**

\[
S_i \delta^T S_j \quad (S_3 \delta^T S_4)
\]
Data Dependence (continued)

- The dependence is said to flow from S_i to S_j because S_i precedes S_j in execution.

- S_i is said to be the source of the dependence. S_j is said to be the sink of the dependence.

- The only "true" dependence is flow dependence; it represents the flow of data in the program.

- The other types of dependence are caused by programming style; they may be eliminated by re-naming.

\[
\begin{align*}
S_1 : & \quad A = 1.0 \\
S_2 : & \quad B = A + 2.0 \\
S_3 : & \quad A1 = C - D \\
& \quad \vdots \\
S_4 : & \quad A2 = B/C
\end{align*}
\]
Data Dependence (continued)

- Data dependence in a program may be represented using a dependence graph $G=(V,E)$, where the nodes V represent statements in the program and the directed edges E represent dependence relations.

\[
\begin{align*}
S_1 : & \quad A = 1.0 \\
S_2 : & \quad B = A + 2.0 \\
S_3 : & \quad A = C - D \\
& \quad \vdots \\
S_4 : & \quad A = B/C
\end{align*}
\]
Value or Location?

- There are two ways a dependence is defined: value-oriented or location-oriented.

\[S_1: \quad A = 1.0 \]
\[S_2: \quad B = A + 2.0 \]
\[S_3: \quad A = C - D \]
\[\vdots \]
\[S_4: \quad A = B/C \]
Example 1

\[
\text{do } i = 2, 4 \\
S_1: \quad a(i) = b(i) + c(i) \\
S_2: \quad d(i) = a(i) \\
\text{end do}
\]

- There is an instance of S_1 that precedes an instance of S_2 in execution and S_1 produces data that S_2 consumes.
- S_1 is the source of the dependence; S_2 is the sink of the dependence.
- The dependence flows between instances of statements in the same iteration (loop-independent dependence).
- The number of iterations between source and sink (dependence distance) is 0. The dependence direction is =.

\[
S_1 \delta^t S_2 \quad \text{or} \quad S_1 \delta^t_0 S_2
\]
Example 2

\[
\begin{align*}
do i & = 2, 4 \\
S_1: & \quad a(i) = b(i) + c(i) \\
S_2: & \quad d(i) = a(i-1)
\end{align*}
\]

end do

- There is an instance of \(S_1 \) that precedes an instance of \(S_2 \) in execution and \(S_1 \) produces data that \(S_2 \) consumes.
- \(S_1 \) is the source of the dependence; \(S_2 \) is the sink of the dependence.
- The dependence flows between instances of statements in different iterations (loop-carried dependence).
- The dependence distance is 1. The direction is positive (\(<\)).

\[
S_1 \delta^< S_2 \quad \text{or} \quad S_1 \delta^1 S_2
\]
Example 3

do i = 2, 4
S1: a(i) = b(i) + c(i)
S2: d(i) = a(i+1)
end do

There is an instance of S_2 that precedes an instance of S_1 in execution and S_2 consumes data that S_1 produces.

S_2 is the source of the dependence; S_1 is the sink of the dependence.

The dependence is loop-carried.

The dependence distance is 1.

$S_2 \delta^a S_1$ or $S_2 \delta^a S_1$

Are you sure you know why it is $S_2 \delta^a S_1$ even though S_1 appears before S_2 in the code?
Example 4

\[
do \ i = 2, 4 \\
\do \ j = 2, 4 \\
a(i,j) = a(i-1,j+1) \\
end do \\
end do
\]

- An instance of \(S \) precedes another instance of \(S \) and \(S \) produces data that \(S \) consumes.
- \(S \) is both source and sink.
- The dependence is loop-carried.
- The dependence distance is \((1,-1)\).

\[
S \delta_{\langle,>}, S \delta_{(1,-1)}\]

Carnegie Mellon
Problem Formulation

- Consider the following perfect nest of depth d:

$$
\begin{align*}
\text{do } I_1 &= L_1, U_1 \\
\text{do } I_2 &= L_2, U_2 \\
\text{...} \\
\text{do } I_d &= L_d, U_d \\
\text{...} \\
\text{enddo} \\
\end{align*}
$$

$$a(f_1(I), f_2(I), \ldots, f_m(I)) = \ldots = a(g_1(I), g_2(I), \ldots, g_m(I))$$

$$
\begin{align*}
\bar{I} &= (l_1, l_2, \ldots, l_d) \\
\bar{L} &= (L_1, L_2, \ldots, L_d) \\
\bar{U} &= (U_1, U_2, \ldots, U_d) \\
\bar{L} &\leq \bar{U}
\end{align*}
$$
Problem Formulation

• Dependence will exist if there exists two iteration vectors \(\vec{k} \) and \(\vec{j} \) such that \(\bar{L} \leq \vec{k} \leq \vec{j} \leq \bar{U} \) and:

\[
\begin{align*}
 f_1(\vec{k}) &= g_1(\vec{j}) \\
 f_2(\vec{k}) &= g_2(\vec{j}) \\
 \vdots \\
 f_m(\vec{k}) &= g_m(\vec{j})
\end{align*}
\]

• That is:

\[
\begin{align*}
 f_1(\vec{k}) - g_1(\vec{j}) &= 0 \\
 f_2(\vec{k}) - g_2(\vec{j}) &= 0 \\
 \vdots \\
 f_m(\vec{k}) - g_m(\vec{j}) &= 0
\end{align*}
\]
Problem Formulation - Example

do i = 2, 4
 S_1: $a(i) = b(i) + c(i)$
 S_2: $d(i) = a(i-1)$
end do

• Does there exist two iteration vectors i_1 and i_2, such that $2 \leq i_1 \leq i_2 \leq 4$ and such that:

 \[
 i_1 = i_2 - 1?
 \]

• Answer: yes; $i_1=2$ & $i_2=3$ and $i_1=3$ & $i_2=4$.

• Hence, there is dependence!

• The dependence distance vector is $i_2 - i_1 = 1$.

• The dependence direction vector is $\text{sign}(1) = <$.
Problem Formulation - Example

\[
\begin{align*}
\text{do } i &= 2, 4 \\
S_1 &: \quad a(i) = b(i) + c(i) \\
S_2 &: \quad d(i) = a(i+1) \\
\end{align*}
\]

end do

• Does there exist two iteration vectors \(i_1\) and \(i_2\), such that \(2 \leq i_1 \leq i_2 \leq 4\) and such that:

\[
i_1 = i_2 + 1?\]

• Answer: yes; \(i_1=3\) & \(i_2=2\) and \(i_1=4\) & \(i_2=3\). (But, but!).

• Hence, there is dependence!

• The dependence distance vector is \(i_2 - i_1 = -1\).

• The dependence direction vector is \(\text{sign}(-1) = \rangle\).

• Is this possible?
Problem Formulation - Example

```plaintext
do i = 1, 10
S_1: a(2*i) = b(i) + c(i)
S_2: d(i) = a(2*i+1)
end do
```

- Does there exist two iteration vectors \(i_1 \) and \(i_2 \), such that \(1 \leq i_1 \leq i_2 \leq 10 \) and such that:

\[
2*i_1 = 2*i_2 + 1?
\]

- Answer: no; \(2*i_1 \) is even & \(2*i_2+1 \) is odd.

- Hence, there is no dependence!
Problem Formulation

- Dependence testing is equivalent to an integer linear programming (ILP) problem of $2d$ variables & $m+d$ constraint!

- An algorithm that determines if there exits two iteration vectors \vec{k} and \vec{j} that satisfies these constraints is called a dependence tester.

- The dependence distance vector is given by $\vec{j} - \vec{k}$.

- The dependence direction vector is given by $\text{sign}(\vec{j} - \vec{k})$.

- Dependence testing is NP-complete!

- A dependence test that reports dependence only when there is dependence is said to be exact. Otherwise it is in-exact.

- A dependence test must be conservative; if the existence of dependence cannot be ascertained, dependence must be assumed.
Dependence Testers

- Lamport’s Test.
- GCD Test.
- Banerjee’s Inequalities.
- Generalized GCD Test.
- Power Test.
- I-Test.
- Omega Test.
- Delta Test.
- Stanford Test.
- etc...
Lamport’s Test

- Lamport’s Test is used when there is a single index variable in the subscript expressions, and when the coefficients of the index variable in both expressions are the same.

\[A(\ldots, b \cdot i + c_1, \ldots) = \ldots \]
\[\ldots = A(\ldots, b \cdot i + c_2, \ldots) \]

- The dependence problem: does there exist \(i_1 \) and \(i_2 \), such that \(L_i \leq i_1 \leq i_2 \leq U_i \) and such that

\[b \cdot i_1 + c_1 = b \cdot i_2 + c_2? \quad \text{or} \quad i_2 - i_1 = \frac{c_1 - c_2}{b}? \]

- There is integer solution if and only if \(\frac{c_1 - c_2}{b} \) is integer.

- The dependence distance is \(d = \frac{c_1 - c_2}{b} \) if \(L_i \leq |d| \leq U_i \).

- \(d > 0 \) \(\Rightarrow \) true dependence.
 - \(d = 0 \) \(\Rightarrow \) loop independent dependence.
 - \(d < 0 \) \(\Rightarrow \) anti dependence.
Lamport’s Test - Example

do i = 1, n
 do j = 1, n
 S: \(a(i,j) = a(i-1,j+1) \)
 end do
end do

- \(i_1 = i_2 - 1 \)?

 \[b = 1; c_1 = 0; c_2 = -1 \]

 \[\frac{c_1 - c_2}{b} = 1 \]

 There is dependence.

 Distance (i) is 1.

- \(j_1 = j_2 + 1 \)?

 \[b = 1; c_1 = 0; c_2 = 1 \]

 \[\frac{c_1 - c_2}{b} = -1 \]

 There is dependence.

 Distance (j) is -1.

\[S \delta_{(1,-1)}^t S \text{ or } S \delta_{(<,>)}^t S \]
Lamport’s Test - Example

\[
\begin{align*}
 &\text{do } i = 1, n \\
 &\text{do } j = 1, n \\
 &\text{end do} \\
 &\text{end do}
\end{align*}
\]

\[
S: \quad a(i, 2^j) = a(i-1, 2^j+1)
\]

- \(i_1 = i_2 - 1? \)

 \[
 b = 1; \quad c_1 = 0; \quad c_2 = -1
 \]

 \[
 \frac{c_1 - c_2}{b} = 1
 \]

 There is dependence.

 Distance (i) is 1.

- \(2^j_1 = 2^j_2 + 1? \)

 \[
 b = 2; \quad c_1 = 0; \quad c_2 = 1
 \]

 \[
 \frac{c_1 - c_2}{b} = \frac{1}{2}
 \]

 There is no dependence.

There is no dependence!
GCD Test

- Given the following equation:

\[
\sum_{i=1}^{n} a_i x_i = c
\]

\(a_i\)'s and \(c\) are integers

an integer solution exists if and only if:

\[
\gcd(a_1, a_2, \ldots, a_n) \text{ divides } c
\]

- Problems:
 - ignores loop bounds.
 - gives no information on distance or direction of dependence.
 - often \(\gcd(\ldots)\) is 1 which always divides \(c\), resulting in false dependences.
GCD Test - Example

\[
\text{do } i = 1, 10 \\
S_1: \quad a(2*i) = b(i) + c(i) \\
S_2: \quad d(i) = a(2*i-1) \\
\text{end do}
\]

- Does there exist two iteration vectors \(i_1 \) and \(i_2 \), such that \(1 \leq i_1 \leq i_2 \leq 10 \) and such that:

\[
2*i_1 = 2*i_2 -1? \\
\text{or} \\
2*i_2 - 2*i_1 = 1?
\]

- There will be an integer solution if and only if \(\text{gcd}(2,-2) \) divides 1.

- This is not the case, and hence, there is no dependence!
GCD Test Example

do i = 1, 10
S_1: a(i) = b(i) + c(i)
S_2: d(i) = a(i-100)
end do

• Does there exist two iteration vectors \(i_1\) and \(i_2\), such that \(1 \leq i_1 \leq i_2 \leq 10\) and such that:

\[i_1 = i_2 - 100? \]

or

\[i_2 - i_1 = 100? \]

• There will be an integer solution if and only if \(\text{gcd}(1,-1)\) divides 100.

• This is the case, and hence, there is dependence! Or is there?
Dependence Testing Complications

- Unknown loop bounds.

```fortran
do i = 1, N
    S_1: a(i) = a(i+10)
end do
```

What is the relationship between N and 10?

- Triangular loops.

```fortran
do i = 1, N
    do j = 1, i-1
        S: a(i,j) = a(j,i)
    end do
end do
```

Must impose $j < i$ as an additional constraint.
More Complications

- User variables.

```
    do i = 1, 10
      S1:  a(i) = a(i+k)
    end do
```

Same problem as unknown loop bounds, but occur due to some loop transformations (e.g., normalization).

```
    do i = L, H
      S1:  a(i) = a(i-1)
    end do
```

↓

```
    do i = 1, H-L
      S1:  a(i+L) = a(i+L-1)
    end do
```
More Complications

- Scalars.

\[
\begin{align*}
\text{do } i = 1, N & \\
S_1: \quad x = a(i) & \Rightarrow \quad S_1: \quad x(i) = a(i) \\
S_2: \quad b(i) = x & \Rightarrow \quad S_2: \quad b(i) = x(i)
\end{align*}
\]

\[
\begin{align*}
\text{do } i = 1, N & \\
S_1: \quad a(i) = a(j) & \Rightarrow \quad S_1: \quad a(i) = a(N-i) \\
S_2: \quad j = j - 1 & \quad \text{end do}
\end{align*}
\]

\[
\begin{align*}
\text{do } i = 1, N & \\
S_1: \quad \text{sum} = \text{sum} + a(i) & \Rightarrow \quad S_1: \quad \text{sum}(i) = a(i) \\
& \quad \text{end do}
\end{align*}
\]

\[
\begin{align*}
\text{sum} = 0 & \\
\text{do } i = 1, N & \\
S_1: \quad \text{sum} = \text{sum} + a(i) & \Rightarrow \quad S_1: \quad \text{sum}(i) = a(i) \\
& \quad \text{end do}
\end{align*}
\]

\[
\begin{align*}
\text{sum} = 0 & \\
\text{do } i = 1, N & \\
S_1: \quad \text{sum} = \text{sum} + a(i) & \Rightarrow \quad S_1: \quad \text{sum}(i) = a(i) \\
& \quad \text{end do}
\end{align*}
\]

\[
\begin{align*}
\text{sum} = 0 & \\
\text{do } i = 1, N & \\
S_1: \quad \text{sum} = \text{sum} + a(i) & \Rightarrow \quad S_1: \quad \text{sum}(i) = a(i) \\
& \quad \text{end do}
\end{align*}
\]

\[
\begin{align*}
\text{sum} = 0 & \\
\text{do } i = 1, N & \\
S_1: \quad \text{sum} = \text{sum} + a(i) & \Rightarrow \quad S_1: \quad \text{sum}(i) = a(i) \\
& \quad \text{end do}
\end{align*}
\]

\[
\begin{align*}
\text{sum} = 0 & \\
\text{do } i = 1, N & \\
S_1: \quad \text{sum} = \text{sum} + a(i) & \Rightarrow \quad S_1: \quad \text{sum}(i) = a(i) \\
& \quad \text{end do}
\end{align*}
\]
Serious Complications

- Aliases.
 - Equivalence Statements in Fortran:

    ```fortran
    real a(10,10), b(10)
    `````

 makes `b` the same as the first column of `a`.

 - Common blocks: Fortran’s way of having shared/global variables.

    ```fortran
    common /shared/a,b,c
    :    :
    :    :
    subroutine foo (...) 
    common /shared/a,b,c
    common /shared/x,y,z
    ```
Loop Parallelization

- A dependence is said to be carried by a loop if the loop is the outmost loop whose removal eliminates the dependence. If a dependence is not carried by the loop, it is loop-independent.

```plaintext
do i = 2, n-1
  do j = 2, m-1
    a(i, j) = ...  
    ... = a(i, j)

    b(i, j) = ...
    ... = b(i, j-1)

    c(i, j) = ...
    ... = c(i-1, j)
  end do
end do
```
Loop Parallelization

- A dependence is said to be *carried* by a loop if the loop is the outmost loop whose removal eliminates the dependence. If a dependence is not carried by the loop, it is loop-independent.

```plaintext
do i = 2, n-1
  do j = 2, m-1
    a(i, j) = ...
    \[ \delta^+= \]
    \[ \ldots = a(i, j) \]
    b(i, j) = ...
    \[ \ldots = b(i, j-1) \]
    c(i, j) = ...
    \[ \ldots = c(i-1, j) \]
  end do
end do
```
Loop Parallelization

- A dependence is said to be carried by a loop if the loop is the outmost loop whose removal eliminates the dependence. If a dependence is not carried by the loop, it is loop-independent.

```plaintext
do i = 2, n-1
  do j = 2, m-1
    a(i, j) = ...
    ...
    = a(i, j)
  end do
  \( \delta_{=,<}^{+} \)
  b(i, j) = ...
  ...
  = b(i, j-1)
  c(i, j) = ...
  ...
  = c(i-1, j)
end do
end do
```
Loop Parallelization

- A dependence is said to be carried by a loop if the loop is the outmost loop whose removal eliminates the dependence. If a dependence is not carried by the loop, it is loop-independent.

\[
\begin{align*}
d & \text{do } i = 2, n-1 \\
& \quad \text{do } j = 2, m-1 \\
& \quad \quad a(i, j) = \ldots \\
& \quad \quad \ldots = a(i, j) \\
& \quad b(i, j) = \ldots \\
& \quad \ldots = b(i, j-1) \\
& \delta^+ c(i, j) = \ldots \\
& \quad \ldots = c(i-1, j) \\
\end{align*}
\]
Loop Parallelization

- A dependence is said to be carried by a loop if the loop is the outmost loop whose removal eliminates the dependence. If a dependence is not carried by the loop, it is loop-independent.

\[
\begin{align*}
\text{do } i &= 2, n-1 \\
\text{do } j &= 2, m-1 \\
\delta^+_{=,=} &= \ldots = a(i, j) \\
\delta^+_{=,<} &= b(i, j) = \ldots = b(i, j-1) \\
\delta^+_{<,=} &= c(i, j) = \ldots = c(i-1, j)
\end{align*}
\]

- Outermost loop with a non "=" direction carries dependence!
Loop Parallelization

The iterations of a loop may be executed in parallel with one another if and only if no dependences are carried by the loop!
Loop Parallelization - Example

- Iterations of loop j must be executed sequentially, but the iterations of loop i may be executed in parallel.

- Outer loop parallelism.
Loop Parallelization - Example

- Iterations of loop i must be executed sequentially, but the iterations of loop j may be executed in parallel.

- Inner loop parallelism.
Loop Parallelization - Example

- Iterations of loop i must be executed sequentially, but the iterations of loop j may be executed in parallel. Why?

- Inner loop parallelism.
Loop Interchange

Loop interchange changes the order of the loops to improve the spatial locality of a program.

```
do j = 1, n
  do i = 1, n
    ... a(i,j) ...
  end do
end do
```
Loop Interchange

Loop interchange changes the order of the loops to improve the spatial locality of a program.

```
  do j = 1, n
    do i = 1, n
      ... a(i, j) ... 
      end do
    end do
  end do
```

```
  do i = 1, n
    do j = 1, n
      ... a(i, j) ... 
      end do
    end do
  end do
```
Loop Interchange

- Loop interchange can improve the granularity of parallelism!

\begin{align*}
\text{do } i = 1, n \\
&\quad \text{do } j = 1, n \\
&\quad \quad a(i,j) = b(i,j) \\
&\quad \quad c(i,j) = a(i-1,j) \\
&\quad \text{end do} \\
&\text{end do}
\end{align*}

\begin{align*}
\text{do } j = 1, n \\
&\quad \text{do } i = 1, n \\
&\quad \quad a(i,j) = b(i,j) \\
&\quad \quad c(i,j) = a(i-1,j) \\
&\quad \text{end do} \\
&\text{end do}
\end{align*}

\[\delta^+=\]

\[\delta_{<=}^+=\]
Loop Interchange

- When is loop interchange legal?
Loop Interchange

- When is loop interchange legal?
Loop Interchange

When is loop interchange legal?
Loop Interchange

When is loop interchange legal? when the “interchanged” dependences remain lexicographically positive!
Loop Blocking (Loop Tiling)

Exploits temporal locality in a loop nest.

do \ t = 1, T
 \ do \ i = 1, n
 \ do \ j = 1, n
 … \ a(i, j) …
 end do
 end do
end do
Loop Blocking (Loop Tiling)

Exploits temporal locality in a loop nest.

do ic = 1, n, B
 do jc = 1, n, B
 do t = 1, T
 do i = 1, B
 do j = 1, B
 \ldots a(ic+i-1,jc+j-1) \ldots
 end do
 end do
 end do
 end do
end do

B: Block size
Loop Blocking (Loop Tiling)

Exploits temporal locality in a loop nest.

\[
\begin{align*}
\text{do } & \text{ ic } = 1, n, B \\
\text{do } & \text{ jc } = 1, n, B \\
\text{do } & \text{ t } = 1, T \\
\text{do } & \text{ i } = 1, B \\
\text{do } & \text{ j } = 1, B \\
\text{... a(} & \text{ic+i-1,jc+j-1)} ... \\
\text{end do} \\
\text{end do} \\
\text{end do} \\
\text{end do} \\
\end{align*}
\]

B: Block size

control loops
Loop Blocking (Loop Tiling)

Exploits temporal locality in a loop nest.

\[
\begin{align*}
do \ ic = 1, n, B \\
do \ jc = 1, n, B \\
do \ t = 1, T \\
do \ i = 1, B \\
do \ j = 1, B \\
\ldots a(ic+i-1,jc+j-1) \ldots \\
end \ do \\
end \ do \\
end \ do \\
end \ do \\
\end{align*}
\]

B: Block size
Loop Blocking (Loop Tiling)

Exploits temporal locality in a loop nest.

```
do ic = 1, n, B
  do jc = 1, n, B
    do t = 1, T
      do i = 1, B
        do j = 1, B
          ... a(ic+i-1,jc+j-1) ...
        end do
      end do
    end do
  end do
end do
```
Loop Blocking (Loop Tiling)

Exploits temporal locality in a loop nest.

do ic = 1, n, B
 do jc = 1, n , B
 do t = 1,T
 do i = 1,B
 do j = 1,B
 ... a(ic+i-1,jc+j-1) ...
 end do
 end do
 end do
 end do
 end do
end do

B: Block size

jc = 2

ic = 2

carnegie mellon university
Loop Blocking (Tiling)

- When is loop blocking legal?