Lectures 25-26
Memory Hierarchy Optimizations &
Locality Analysis

Caches: A Quick Review

- How do they work?
- Why do we care about them?
- What are typical configurations today?
- What are some important cache parameters that will affect performance?

Optimizing Cache Performance

- Things to enhance:
 - temporal locality
 - spatial locality

- Things to minimize:
 - conflicts (i.e. bad replacement decisions)

 What can the compiler do to help?

Two Things We Can Manipulate

- Time:
 - When is an object accessed?

- Space:
 - Where does an object exist in the address space?

 How do we exploit these two levers?
Time: Reordering Computation

- What makes it difficult to know when an object is accessed?
- How can we predict a better time to access it?
- What information is needed?
- How do we know that this would be safe?

Space: Changing Data Layout

- What do we know about an object's location?
 - scalars, structures, pointer-based data structures, arrays, code, etc.
- How can we tell what a better layout would be?
 - how many can we create?
- To what extent can we safely alter the layout?

Types of Objects to Consider

- Scalars
- Structures & Pointers
- Arrays

Scalars

- Locals
- Globals
- Procedure arguments
- Is cache performance a concern here?
- If so, what can be done?

```c
int x;
double y;
foo(int a){
    int i;
    ...;
    x = a*i;
    ...;
}
```
Structures and Pointers

- What can we do here?
 - within a node
 - across nodes

- What limits the compiler's ability to optimize here?

```c
struct node {
    int count;
    double velocity;
    double inertia;
    struct node *neighbors[N];
} node;
```

Arrays

double A[N][N], B[N][N];
...
for i = 0 to N-1
 for j = 0 to N-1
 A[i][j] = B[j][i];

- usually accessed within loops nests
- makes it easy to understand "time"
- what we know about array element addresses:
 - start of array?
 - relative position within array

Handy Representation: "Iteration Space"

```
for i = 0 to N-1
    for j = 0 to N-1
        A[i][j] = B[j][i];
```

Visitation Order in Iteration Space

```
for i = 0 to N-1
    for j = 0 to N-1
        A[i][j] = B[j][i];
```

- Note: iteration space ≠ data space

Arrays

double A[N][N], B[N][N];
...
for i = 0 to N-1
 for j = 0 to N-1
 A[i][j] = B[j][i];

- usually accessed within loops nests
- makes it easy to understand "time"
- what we know about array element addresses:
 - start of array?
 - relative position within array

Handy Representation: "Iteration Space"

```
for i = 0 to N-1
    for j = 0 to N-1
        A[i][j] = B[j][i];
```

Visitation Order in Iteration Space

```
for i = 0 to N-1
    for j = 0 to N-1
        A[i][j] = B[j][i];
```

- Note: iteration space ≠ data space
When Do Cache Misses Occur?

for \(i = 0 \) to \(N-1 \)
for \(j = 0 \) to \(N-1 \)
\[
A[i][j] = B[j][i];
\]

Optimizing the Cache Behavior of Array Accesses

- We need to answer the following questions:
 - when do cache misses occur?
 - use "locality analysis"
 - can we change the order of the iterations (or possibly data layout) to produce better behavior?
 - evaluate the cost of various alternatives
 - does the new ordering/layout still produce correct results?
 - use "dependence analysis"

Examples of Loop Transformations

- Loop Interchange
- Cache Blocking
- Skewing
- Loop Reversal
- ...

(we will briefly discuss the first two)
Loop Interchange

for \(i = 0 \) to \(N-1 \)
for \(j = 0 \) to \(N-1 \)
\[A[j][i] = i \cdot j; \]

Cache Blocking (aka "Tiling")

for \(i = 0 \) to \(N-1 \)
for \(j = 0 \) to \(N-1 \)
\[f(A[i], A[j]); \]

Impact on Visitation Order in Iteration Space

for \(i = 0 \) to \(N-1 \)
for \(j = 0 \) to \(N-1 \)
\[f(A[i], A[j]); \]

Cache Blocking in Two Dimensions

for \(i = 0 \) to \(N-1 \)
for \(k = 0 \) to \(N-1 \)
\[c[i,k] += a[i,j] \cdot b[j,k]; \]

• brings square sub-blocks of matrix "b" into the cache
• completely uses them up before moving on
Predicting Cache Behavior through "Locality Analysis"

- **Definitions:**
 - **Reuse:** accessing a location that has been accessed in the past
 - **Locality:** accessing a location that is now found in the cache

- **Key Insights**
 - Locality only occurs when there is reuse!
 - BUT, reuse does not necessarily result in locality.
Finding Temporal Reuse

- Temporal reuse occurs between iterations \(\vec{i}_1 \) and \(\vec{i}_2 \) whenever:
 \[
 H\vec{i}_1 + \vec{c} = H\vec{i}_2 + \vec{c} \\
 H(\vec{i}_1 - \vec{i}_2) = \vec{0}
 \]

- Rather than worrying about individual values of \(\vec{i}_1 \) and \(\vec{i}_2 \), we say that reuse occurs along direction vector \(\vec{r} \) when:
 \[
 H(\vec{r}) = \vec{0}
 \]

- Solution: compute the nullspace of \(H \)

Temporal Reuse Example

for \(i = 0 \) to 2
for \(j = 0 \) to 100
\[
A[i][j] = B[j][0] + B[j+1][0];
\]

- Reuse between iterations \((i_1,j_1)\) and \((i_2,j_2)\) whenever:
 \[
 \begin{bmatrix}
 0 & 1 \\
 0 & 0 \\
 \end{bmatrix}
 \begin{bmatrix}
 i_1 \\
 j_1 \\
 \end{bmatrix}
 +
 \begin{bmatrix}
 0 & 1 \\
 0 & 0 \\
 \end{bmatrix}
 \begin{bmatrix}
 i_2 \\
 j_2 \\
 \end{bmatrix}
 = \begin{bmatrix}
 0 \\
 0 \\
 \end{bmatrix}
 \]

- True whenever \(j_1 = j_2 \), and regardless of the difference between \(i_1 \) and \(i_2 \).
 - i.e. whenever the difference lies along the nullspace of \(\begin{bmatrix}
 0 & 1 \\
 0 & 0 \\
 \end{bmatrix} \) which is \(\text{span}\{(1,0)\} \) (i.e. the outer loop).

More Complicated Example

for \(i = 0 \) to \(N-1 \)
for \(j = 0 \) to \(N-1 \)
\[
A[i+j][0] = i \times j;
\]

- Nullspace of \(\begin{bmatrix}
 1 & 1 \\
 0 & 0 \\
 \end{bmatrix} = \text{span}\{(1,-1)\} \)

Computing Spatial Reuse

- Replace last row of \(H \) with zeros, creating \(H_s \)
- Find the nullspace of \(H_s \)
- Result: vector along which we access the same row
Computing Spatial Reuse: Example

For $i = 0$ to 2
For $j = 0$ to 100
\[A[i][j] = B[j][0] + B[j+1][0]; \]

- $H_s = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$
- Nullspace of $H_s = \text{span}((0,1))$
 - i.e. access same row of $A[i][j]$ along inner loop

Group Reuse

For $i = 0$ to 2
For $j = 0$ to 100
\[A[i][j] = B[j][0] + B[j+1][0]; \]

- Only consider "uniformly generated sets"
 - index expressions differ only by constant terms
 - Check whether they actually do access the same cache line
 - Only the "leading reference" suffers the bulk of the cache misses

Localized Iteration Space

- Given finite cache, when does reuse result in locality?

 For $i = 0$ to 2
 For $j = 0$ to 8
 \[A[i][j] = B[j][0] + B[j+1][0]; \]

 Localized: both i and j loops (i.e. $\text{span}((1,0),(0,1))$)

 For $i = 0$ to 2
 For $j = 0$ to 100000
 \[A[i][j] = B[j][0] + B[j+1][0]; \]

 Localized: j loop only (i.e. $\text{span}(0,1)$)

- Localized if accesses less data than effective cache size
Computing Locality

- Reuse Vector Space \(\cap \) Localized Vector Space \(\Rightarrow \) Locality Vector Space

- Example:
  ```
  for i = 0 to 2
    for j = 0 to 100
      A[i][j] = B[j][0] + B[j+1][0];
  ```

- If both loops are localized:
 - \(\text{span}(1,0) \cap \text{span}(1,0),(0,1) \Rightarrow \text{span}(1,0) \)
 - i.e. temporal reuse does result in \text{temporal locality}

- If only the innermost loop is localized:
 - \(\text{span}(1,0) \cap \text{span}(0,1) \Rightarrow \text{span}() \)
 - i.e. \text{no temporal locality}