Lectures 25-26

Memory Hierarchy Optimizations & Locality Analysis
Caches: A Quick Review

- How do they work?
- Why do we care about them?
- What are typical configurations today?
- What are some important cache parameters that will affect performance?
Optimizing Cache Performance

- Things to enhance:
 - temporal locality
 - spatial locality

- Things to minimize:
 - conflicts (i.e. bad replacement decisions)

What can the **compiler** do to help?
Two Things We Can Manipulate

- **Time:**
 - When is an object accessed?

- **Space:**
 - Where does an object exist in the address space?

How do we exploit these two levers?
Time: Reordering Computation

- What makes it difficult to know *when* an object is accessed?

- How can we predict a *better time* to access it?
 - What information is needed?

- How do we know that this would be *safe*?
Changing Data Layout

- What do we know about an object’s location?
 - scalars, structures, pointer-based data structures, arrays, code, etc.

- How can we tell what a better layout would be?
 - how many can we create?

- To what extent can we safely alter the layout?
Types of Objects to Consider

- Scalars
- Structures & Pointers
- Arrays
Scalars

- Locals
- Globals
- Procedure arguments
- Is cache performance a concern here?
- If so, what can be done?

```c
int x;
double y;
foo(int a){
    int i;
    ...
    x = a*i;
    ...
}
```
Structures and Pointers

- What can we do here?
 - within a node
 - across nodes

- What limits the compiler’s ability to optimize here?
Arrays

double A[N][N], B[N][N];
...
for i = 0 to N-1
 for j = 0 to N-1
 A[i][j] = B[j][i];

• usually accessed within loops nests
 • makes it easy to understand “time”
• what we know about array element addresses:
 • start of array?
 • relative position within array
Handy Representation: “Iteration Space”

for $i = 0$ to $N-1$
 for $j = 0$ to $N-1$
 $A[i][j] = B[j][i]$;

- each position represents an iteration
Visitation Order in Iteration Space

for $i = 0$ to $N-1$
for $j = 0$ to $N-1$
 $A[i][j] = B[j][i]$;

• Note: iteration space ≠ data space
When Do Cache Misses Occur?

for $i = 0$ to $N-1$
for $j = 0$ to $N-1$
\[A[i][j] = B[j][i]; \]
When Do Cache Misses Occur?

for $i = 0$ to $N-1$
 for $j = 0$ to $N-1$
 $A[i+j][0] = i*j;$
Optimizing the Cache Behavior of Array Accesses

- We need to answer the following questions:
 - when do cache misses occur?
 - use “locality analysis”
 - can we change the order of the iterations (or possibly data layout) to produce better behavior?
 - evaluate the cost of various alternatives
 - does the new ordering/layout still produce correct results?
 - use “dependence analysis”
Examples of Loop Transformations

- Loop Interchange
- Cache Blocking
- Skewing
- Loop Reversal
- ...

(we will briefly discuss the first two)
Loop Interchange

for \(i = 0 \) to \(N-1 \)
for \(j = 0 \) to \(N-1 \)
\[
A[j][i] = i \times j;
\]

for \(j = 0 \) to \(N-1 \)
for \(i = 0 \) to \(N-1 \)
\[
A[j][i] = i \times j;
\]

• (assuming \(N \) is large relative to cache size)
Cache Blocking (aka “Tiling”)

for $i = 0$ to $N-1$
 for $j = 0$ to $N-1$
 $f(A[i], A[j])$;

for $i = 0$ to $N-1$
 for $j = JJ$ to max($N-1, JJ+B-1$)
 $f(A[i], A[j])$;

now we can exploit temporal locality
Impact on Visitation Order in Iteration Space

\[
\begin{align*}
&\text{for } i = 0 \text{ to } N-1 \\
&\quad \text{for } j = 0 \text{ to } N-1 \\
&\quad \quad f(A[i], A[j]); \\
&\text{for } i = 0 \text{ to } N-1 \\
&\quad \text{for } j = JJ \text{ to } \max(N-1, JJ+B-1) \\
&\quad \quad f(A[i], A[j]);
\end{align*}
\]
Cache Blocking in Two Dimensions

for JJ = 0 to N-1 by B
for KK = 0 to N-1 by B
for i = 0 to N-1
 for j = JJ to max(N-1, JJ+B-1)
 for k = KK to max(N-1, KK+B-1)
 c[i,k] += a[i,j]*b[j,k];

- brings square sub-blocks of matrix “b” into the cache
- completely uses them up before moving on
Predicting Cache Behavior through “Locality Analysis”

- Definitions:
 - **Reuse**: accessing a location that has been accessed in the past
 - **Locality**: accessing a location that is now found in the cache

- Key Insights
 - Locality only occurs when there is reuse!
 - BUT, reuse does not necessarily result in locality.
 - why not?
Steps in Locality Analysis

1. Find data reuse
 • if caches were infinitely large, we would be finished

2. Determine “localized iteration space”
 • set of inner loops where the data accessed by an iteration is expected to fit within the cache

3. Find data locality:
 • reuse \cap localized iteration space \Rightarrow locality
Types of Data Reuse/Localilty

for $i = 0$ to 2
for $j = 0$ to 100

Reuse Analysis: Representation

\[
\text{for } i = 0 \text{ to } 2 \\
\text{for } j = 0 \text{ to } 100 \\
A[i][j] = B[j][0] + B[j+1][0];
\]

- Map \(n \) loop indices into \(d \) array indices via array indexing function:

\[
\vec{f} (\vec{i}) = H \vec{i} + \vec{c}
\]

\[
A[i][j] = A \left(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} i \\ j \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right)
\]

\[
B[j][0] = B \left(\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} i \\ j \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right)
\]

\[
B[j+1][0] = B \left(\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} i \\ j \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right)
\]
Finding Temporal Reuse

• Temporal reuse occurs between iterations \vec{v}_1 and \vec{v}_2 whenever:

$$H\vec{v}_1 + \vec{c} = H\vec{v}_2 + \vec{c}$$
$$H(\vec{v}_1 - \vec{v}_2) = \vec{0}$$

• Rather than worrying about individual values of \vec{v}_1 and \vec{v}_2, we say that reuse occurs along direction vector \vec{r} when:

$$H(\vec{r}) = \vec{0}$$

• Solution: compute the nullspace of H
Temporal Reuse Example

\[
\begin{align*}
\text{for } i &= 0 \text{ to } 2 \\
\text{for } j &= 0 \text{ to } 100 \\
A[i][j] &= B[j][0] + B[j+1][0];
\end{align*}
\]

- Reuse between iterations \((i_1, j_1)\) and \((i_2, j_2)\) whenever:
 \[
 \begin{bmatrix}
 0 & 1 \\
 0 & 0
 \end{bmatrix}
 \begin{bmatrix}
 i_1 \\
 j_1
 \end{bmatrix}
 +
 \begin{bmatrix}
 1 \\
 0
 \end{bmatrix}
 =
 \begin{bmatrix}
 0 & 1 \\
 0 & 0
 \end{bmatrix}
 \begin{bmatrix}
 i_2 \\
 j_2
 \end{bmatrix}
 +
 \begin{bmatrix}
 1 \\
 0
 \end{bmatrix}
 \]
 \[
 \begin{bmatrix}
 0 & 1 \\
 0 & 0
 \end{bmatrix}
 \begin{bmatrix}
 i_1 - i_2 \\
 j_1 - j_2
 \end{bmatrix}
 =
 \begin{bmatrix}
 0 \\
 0
 \end{bmatrix}
 \]
- True whenever \(j_1 = j_2\), and regardless of the difference between \(i_1\) and \(i_2\).
 - i.e. whenever the difference lies along the nullspace of \(\begin{bmatrix}
 0 & 1 \\
 0 & 0
 \end{bmatrix}\), which is \(\text{span}\{(1,0)\}\) (i.e. the outer loop).
More Complicated Example

for \(i = 0 \) to \(N-1 \)
 for \(j = 0 \) to \(N-1 \)
 \(A[i+j][0] = i \times j; \)

\[
A[i+j][0] = A \left(\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} i \\ j \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right)
\]

- Nullspace of \(\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \) = span\{\((1,-1) \)\}.
Computing Spatial Reuse

- Replace last row of H with zeros, creating H_s
- Find the nullspace of H_s

Result: vector along which we access the same row
Computing Spatial Reuse: Example

for $i = 0$ to 2
 for $j = 0$ to 100

$A[i][j] = A \left(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} i \\ j \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right)$

• $H_s = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$

• Nullspace of $H_s = \text{span}\{(0,1)\}$
 • i.e. access same row of $A[i][j]$ along inner loop
Computing Spatial Reuse: More Complicated Example

for $i = 0$ to $N-1$
 for $j = 0$ to $N-1$
 $A[i+j] = i \cdot j$;

$A[i+j] = A \begin{bmatrix} 1 & 1 \\ i & j \end{bmatrix} + \begin{bmatrix} 0 \end{bmatrix}$

- $H_s = \begin{bmatrix} 0 & 0 \end{bmatrix}$
- Nullspace of $H = \text{span}\{(1,-1)\}$
- Nullspace of $H_s = \text{span}\{(1,0),(0,1)\}$
Group Reuse

for i = 0 to 2
 for j = 0 to 100
 A[i][j] = B[j][0] + B[j+1][0];

• Only consider “uniformly generated sets”
 • index expressions differ only by constant terms
• Check whether they actually do access the same cache line
• Only the “leading reference” suffers the bulk of the cache misses
Localized Iteration Space

- Given finite cache, when does reuse result in locality?

```plaintext
for i = 0 to 2
    for j = 0 to 8
        A[i][j] = B[j][0] + B[j+1][0];
```

Localized: both i and j loops (i.e. span{(1,0),(0,1)})

```plaintext
for i = 0 to 2
    for j = 0 to 1000000
        A[i][j] = B[j][0] + B[j+1][0];
```

Localized: j loop only (i.e. span{(0,1)})

- Localized if accesses less data than effective cache size
Computing Locality

- **Reuse Vector Space** ∩ **Localized Vector Space** ⇒ **Locality** Vector Space

- **Example:**

  ```
  for i = 0 to 2
  for j = 0 to 100
      A[i][j] = B[j][0] + B[j+1][0];
  ```

- **If both loops are localized:**
 - span{(1,0)} ∩ span{(1,0),(0,1)} ⇒ span{(1,0)}
 - i.e. temporal reuse *does* result in **temporal locality**

- **If only the innermost loop is localized:**
 - span{(1,0)} ∩ span{(0,1)} ⇒ span{}
 - i.e. **no temporal locality**