Lecture 18 (Part 2)
Global Scheduling

Reading: Chapter 10.4

Assume each clock can execute 2 operations of any kind.

```
if (a==0) goto L
LD R6 <- 0(R1)
nop
B1

e = d + d

LD R7 <- 0(R2)
nop
ST 0(R3) <- R7
L:
```

```
LD R6 <- 0(R1) ; LD R8 <- 0(R4)
LD R7 <- 0(R2)
ADD R8 <- R8,R8 ; BEQZ R6, L
L: ST 0(R5) <- R8
       B1
        B1
L: ST 0(R5) <- R8 ; ST 0(R3) <- R7
```

Result of Code Scheduling

Terminology

Control equivalence:
• Two operations o1 and o2 are control equivalent
 if o1 is executed if and only if o2 is executed.

Control dependence:
• An op o2 is control dependent on op o1
 if the execution of o2 depends on the outcome of o1.

Speculation:
• An operation o is speculatively executed if it
 is executed before all the operations it
 depends on (control-wise) have been executed.

Requirements:
• does not raise an exception
• satisfies data dependences
Code Motions

Goal: Shorten execution time **probabilistically**

Moving instructions up:
- Move instruction to a cut set (from entry)
- Speculation: even when not anticipated.

Moving instructions down:
- Move instruction to a cut set (from exit)
- May execute extra instruction
- Can duplicate code

A Note on Data Dependences

- \(a = 0 \)
- \(a = 1 \)

General-Purpose Applications

- Lots of data dependences
- Key performance factor: memory latencies
- **Move memory fetches up**
 - Speculative memory fetches can be expensive
- **Control-intensive:** get execution profile
 - **Static estimation**
 - Innermost loops are frequently executed
 - Back edges are likely to be taken
 - Edges that branch to exit and exception routines are not likely to be taken
 - **Dynamic profiling**
 - Instrument code and measure using representative data

A Basic Global Scheduling Algorithm

- Schedule innermost loops first
- Only upward code motion
- No creation of copies
- Only one level of speculation
Program Representation

- A region in a control flow graph is:
 - a set of basic blocks and all the edges connecting these blocks,
 - such that control from outside the region must enter through a single entry block.
- A function is represented as a hierarchy of regions
 - The whole control flow graph is a region
 - Each natural loop in the flow graph is a region
 - Natural loops are hierarchically nested
- Schedule regions from inner to outer
 - treat inner loop as a black box unit
 - can schedule around it but not into it
 - ignore all the loop back edges \(\rightarrow\) get an acyclic graph

Algorithm

Compute data dependences;
For each region from inner to outer {
 For each basic block B in prioritized topological order {
 CandBlocks = ControlEquiv(B) \(\cup\) Dominated-Successors(ControlEquiv(B));
 CandInsts = ready operations in CandBlocks;
 For (t = 0, 1, ... until all operations from B are scheduled) {
 For (n in CandInst in priority order) {
 if (n has no resource conflicts at time t) {
 S(t) = (B, t)
 Update resource commitments
 Update data dependences
 }
 }
 }
 }
}

Priority functions: non-speculative before speculative

Extensions

- Prepass before scheduling: loop unrolling
- Especially important to move operation up loop back edges

Summary

- Global scheduling
 - Legal code motions
 - Heuristics