Lecture 15
Register Allocation

I. Introduction
II. Abstraction and the Problem
III. Algorithm

Reading: ALSU 8.8.4

I. Motivation

- Problem
 - Allocation of variables (pseudo-registers) to hardware registers in a procedure
- Perhaps the most important optimization
 - Directly reduces running time
 - (memory access \(\rightarrow\) register access)
 - Useful for other optimizations
 - e.g. CSE assumes old values are kept in registers.

Goals

- Find an allocation for all pseudo-registers, if possible.
- If there are not enough registers in the machine, choose registers to spill to memory

Example

\[
\begin{align*}
A &= \text{IF A goto L1} \\
B &= \ldots \\
D &= A \\
D &= B + D
\end{align*}
\]

\[
\begin{align*}
L1: C &= \ldots \\
D &= A \\
D &= C + D
\end{align*}
\]
II. An Abstraction for Allocation & Assignment

Intuitively
- Two pseudo-registers interfere if at some point in the program they cannot both occupy the same register.

Interference graph: an undirected graph, where
- nodes = pseudo-registers
- there is an edge between two nodes if their corresponding pseudo-registers interfere

What is not represented
- Extent of the interference between uses of different variables
- Where in the program is the interference

Register Allocation and Coloring

A graph is n-colorable if:
- every node in the graph can be colored with one of the n colors such that two adjacent nodes do not have the same color.

Assigning n register (without spilling) = Coloring with n colors
- assign a node to a register (color) such that no two adjacent nodes are assigned same registers(colors)

Is spilling necessary? = Is the graph n-colorable?

To determine if a graph is n-colorable is NP-complete, for n>2
- Too expensive
- Heuristics

III. Algorithm

Step 1. Build an interference graph
 a. refining notion of a node
 b. finding the edges

Step 2. Coloring
 - use heuristics to try to find an n-coloring
 • Success:
 - colorable and we have an assignment
 • Failure:
 - graph not colorable, or
 - graph is colorable, but it is too expensive to color

Step 1a. Nodes in an Interference Graph

A = ...
IF A goto L1
B = ...
D = B + D
D = A
D = D + C
L1: C = ...
C = A
A = ...
D = A
= A
if A goto L1

Live Ranges and Merged Live Ranges

- **Motivation:** to create an interference graph that is easier to color
 - Eliminate interference in a variable's "dead" zones.
 - Increase flexibility in allocation:
 - can allocate same variable to different registers.
- A live range consists of a definition and all the points in a program (e.g. end of an instruction) in which that definition is live.
- How to compute a live range?

Two overlapping live ranges for the same variable must be merged

Merging Live Ranges

- **Merging definitions into equivalence classes**
 - Start by putting each definition in a different equivalence class
 - For each point in a program:
 - if (i) variable is live, and (ii) there are multiple reaching definitions for the variable, then:
 - merge the equivalence classes of all such definitions into one equivalence class
- From now on, refer to merged live ranges simply as live ranges
 - merged live ranges are also known as "webs"

Example (Revisited)

Live Variables
Reaching Definitions

Step 1b. Edges of Interference Graph

- **Intuitively:**
 - Two live ranges (necessarily of different variables) may interfere if they overlap at some point in the program.
- **Algorithm:**
 - At each point in the program:
 - enter an edge for every pair of live ranges at that point.
- **An optimized definition & algorithm for edges:**
 - **Algorithm:**
 - check for interference only at the start of each live range
 - Faster
 - Better quality
Example 2

IF Q goto L1
A = ...
L1: B = ...
IF Q goto L2
L2: ...
... = A
... = B

Step 2. Coloring

• Reminder: coloring for \(n > 2 \) is NP-complete

• Observations:
 - a node with degree \(< n \) ⇒
 - can always color it successfully, given its neighbors’ colors
 - a node with degree \(= n \) ⇒
 - a node with degree \(> n \) ⇒

Coloring Algorithm

• Algorithm:
 - Iterate until stuck or done
 - Pick any node with degree \(< n \)
 - Remove the node and its edges from the graph
 - If done (no nodes left)
 - reverse process and add colors
• Example (\(n = 3 \)):

What Does Coloring Accomplish?

• Done:
 - colorable, also obtained an assignment
• Stuck:
 - colorable or not?
What if Coloring Fails?

- Use heuristics to improve its chance of success and to spill code
 - Build interference graph
 - Iterative until there are no nodes left
 - If there exists a node \(v \) with less than \(n \) neighbors
 - place \(v \) on stack to register allocate
 - else
 - \(v \) = node chosen by heuristics
 - (least frequently executed, has many neighbors)
 - place \(v \) on stack to register allocate (mark as spilled)
 - remove \(v \) and its edges from graph
 - While stack is not empty
 - Remove \(v \) from stack
 - Reinsert \(v \) and its edges into the graph
 - Assign \(v \) a color that differs from all its neighbors
 (guaranteed to be possible for nodes not marked as spilled)

Summary

- Problems:
 - Given \(n \) registers in a machine, is spilling avoided?
 - Find an assignment for all pseudo-registers, whenever possible.
- Solution:
 - Abstraction: an interference graph
 - nodes: live ranges
 - edges: presence of live range at time of definition
 - Register Allocation and Assignment problems
 - equivalent to \(n \)-colorability of interference graph
 - \(\text{NP}\)-complete
 - Heuristics to find an assignment for \(n \) colors
 - successful: colorable, and finds assignment
 - not successful: colorability unknown & no assignment