Lecture 15

Register Allocation

I. Introduction
II. Abstraction and the Problem
III. Algorithm

Reading: ALSU 8.8.4
I. Motivation

• **Problem**
 – Allocation of variables (pseudo-registers) to hardware registers in a procedure

• **Perhaps the most important optimization**
 – Directly reduces running time
 • (memory access \rightarrow register access)
 – Useful for other optimizations
 • *e.g.* CSE assumes old values are kept in registers.
Goals

• Find an allocation for all pseudo-registers, if possible.
• If there are not enough registers in the machine, choose registers to spill to memory
Example

A = ...
IF A goto L1

B = ...
 = A
D =
 = B + D

L1: C = ...
 = A
D =
 = C + D
II. An Abstraction for Allocation & Assignment

• **Intuitively**
 - Two pseudo-registers **interfere** if at some point in the program they cannot both occupy the same register.

• **Interference graph**: an undirected graph, where
 - nodes = pseudo-registers
 - there is an edge between two nodes if their corresponding pseudo-registers interfere

• **What is not represented**
 - Extent of the interference between uses of different variables
 - Where in the program is the interference
Register Allocation and Coloring

- A graph is **n-colorable** if:
 - every node in the graph can be colored with one of the n colors such that two adjacent nodes do not have the same color.

- **Assigning n register (without spilling) = Coloring with n colors**
 - assign a node to a register (color) such that no two adjacent nodes are assigned same registers(colors)

- Is spilling necessary? = Is the graph n-colorable?

- To determine if a graph is n-colorable is **NP-complete, for n>2**
 - Too expensive
 - Heuristics
III. Algorithm

Step 1. Build an interference graph
 a. refining notion of a node
 b. finding the edges

Step 2. Coloring
 - use heuristics to try to find an n-coloring
 • Success:
 - colorable and we have an assignment
 • Failure:
 - graph not colorable, or
 - graph is colorable, but it is too expensive to color
Step 1a. Nodes in an Interference Graph

A = ...
IF A goto L1

B = ...
= A
D =
= B + D

L1: C = ...
= A
D =
= D + C

A = 2

= A
Live Ranges and Merged Live Ranges

- Motivation: to create an interference graph that is easier to color
 - Eliminate interference in a variable’s “dead” zones.
 - Increase flexibility in allocation:
 - can allocate same variable to different registers

- A live range consists of a definition and all the points in a program (e.g. end of an instruction) in which that definition is live.
 - How to compute a live range?

- Two overlapping live ranges for the same variable must be merged
Example (Revisited)

Live Variables
Reaching Definitions

A = ... (A₁)
IF A goto L1

B = ... (B₁)
 = A
D = B (D₂)

A = 2 (A₂)

L1:
C = ... (C₁)
 = A
D = ... (D₁)

A₁, B₁, C₁, D₁, D₂

{A₁, B₁, C₁, D₁, D₂}
{A₂, B₁, C₁, D₁, D₂}

{A₁, B₁, C₁, D₁, D₂}
{A₂, B₁, C₁, D₁, D₂}

Merge

A = 2 (A₂)

D = ... (D₁)

C = ... (C₁)

D = ... (D₁)

A₁, C₁, D₁

{A₁, C₁, D₁}
{A₁, C₁, D₁}
{A₁, C₁, D₁}
{A₁, C₁, D₁}
{A₁, C₁, D₁}
Merging Live Ranges

- **Merging definitions into equivalence classes**
 - Start by putting each definition in a different equivalence class
 - For each point in a program:
 - if (i) variable is live, and (ii) there are multiple reaching definitions for
 the variable, then:
 - merge the equivalence classes of all such definitions into one
 equivalence class

- **From now on, refer to merged live ranges simply as live ranges**
 - merged live ranges are also known as “webs”
Step 1b. Edges of Interference Graph

- **Intuitively:**
 - Two live ranges (necessarily of different variables) may interfere if they overlap at some point in the program.
 - **Algorithm:**
 - At each point in the program:
 - enter an edge for every pair of live ranges at that point.

- **An optimized definition & algorithm for edges:**
 - **Algorithm:**
 - check for interference only at the start of each live range
 - Faster
 - Better quality
Example 2

IF Q goto L1

A = ...

L1: B = ...

IF Q goto L2

... = A

L2: ... = B
Step 2. Coloring

• Reminder: coloring for $n > 2$ is NP-complete

• **Observations:**

 – a node with $\text{degree} < n$ ⇒
 • can always color it successfully, given its neighbors’ colors

 – a node with $\text{degree} = n$ ⇒

 – a node with $\text{degree} > n$ ⇒
Coloring Algorithm

• Algorithm:
 – Iterate until stuck or done
 • Pick any node with degree < n
 • Remove the node and its edges from the graph
 – If done (no nodes left)
 • reverse process and add colors

• Example (n = 3):

 ![Graph Diagram]

• Note: degree of a node may drop in iteration
• Avoids making arbitrary decisions that make coloring fail
What Does Coloring Accomplish?

• **Done:**
 – colorable, also obtained an assignment

• **Stuck:**
 – colorable or not?
What if Coloring Fails?

- Use heuristics to improve its chance of success and to spill code

Build interference graph

Iterative until there are no nodes left
 If there exists a node v with less than n neighbors
 place v on stack to register allocate
 else
 v = node chosen by heuristics
 (least frequently executed, has many neighbors)
 place v on stack to register allocate (mark as spilled)
 remove v and its edges from graph

While stack is not empty
 Remove v from stack
 Reinsert v and its edges into the graph
 Assign v a color that differs from all its neighbors
 (guaranteed to be possible for nodes not marked as spilled)
Summary

• **Problems:**
 – Given \(n \) registers in a machine, is spilling avoided?
 – Find an assignment for all pseudo-registers, whenever possible.

• **Solution:**
 – *Abstraction*: an interference graph
 • nodes: live ranges
 • edges: presence of live range at time of definition
 – Register Allocation and Assignment problems
 • equivalent to \(n \)-colorability of interference graph
 \(\Rightarrow \) NP-complete
 – *Heuristics* to find an assignment for \(n \) colors
 • **successful**: colorable, and finds assignment
 • **not successful**: colorability unknown & no assignment