Lecture 13
Introduction to Static Single Assignment (SSA)

(Slides courtesy of Seth Goldstein.)

Todd C. Mowry 15-745: Intro to SSA 1

Values ≠ Locations

```
for (i=0; i++; i<10) {
  ...
}
for (i=j; i++; i<20) {
  ...
}
```

Def-use chains help solve the problem.

Todd C. Mowry 15-745: Intro to SSA 2

Def-Use Chains are Expensive

```
foo(int i, int j) {
  switch (i) {case 0: x=3; break;
  case 1: x=1; break;
  case 2: x=6; break;
  case 3: x=7; break;
  default: x = 11;
  }
  switch (j) {case 0: y=x+7; break;
  case 1: y=x+4; break;
  case 2: y=x-2; break;
  case 3: y=x+1; break;
  default: y=x+9;
  }
}
```

In general,

```
N defs
M uses
⇒ O(NM) space and time
```

One solution: limit each variable to ONE definition site

Todd C. Mowry 15-745: Intro to SSA 3

Def-Use Chains are Expensive

```
foo(int i, int j) {
  switch (i) {case 0: x1=x; break;
  case 1: x1=x1; break;
  case 2: x1=x2; break;
  case 3: x1=x3; break;
  default: x1 = x11;
  }
  switch (j) {case 0: y=x1+7; break;
  case 1: y=x1+4; break;
  case 2: y=x1-2; break;
  case 3: y=x1+3; break;
  default: y=x1+9;
  }
}
```

x1 is one of the above x’s

One solution: limit each variable to ONE definition site

Todd C. Mowry 15-745: Intro to SSA 4
Advantages of SSA

- Makes du-chains explicit
- Makes dataflow analysis easier
- Improves register allocation
 - Automatically builds “webs”
 - Makes building interference graphs easier
- For most programs reduces space/time requirements

SSA

- Static single assignment is an IR where every variable is assigned a value at most once in the program text
- Easy for a basic block:
 - assign to a fresh variable at each stmt.
 - each use uses the most recently defined var.
 - (Similar to Value Numbering)

Straight-line SSA

\[
\begin{align*}
a & \leftarrow x + y \\
b & \leftarrow a + x \\
a & \leftarrow b + 2 \\
c & \leftarrow y + 1 \\
a & \leftarrow c + a \\
a_1 & \leftarrow x + y \\
b_1 & \leftarrow a_1 + x \\
a_2 & \leftarrow b_1 + 2 \\
c_1 & \leftarrow y + 1 \\
a_3 & \leftarrow c_1 + a_2
\end{align*}
\]
Merging at Joins

```plaintext
c ← 12
if (i) {
    a ← x + y
    b ← a + x
} else {
    a ← b + 2
    c ← y + 1
}

a ← a1 + a2
```

SSA

- Static single assignment is an IR where every variable is assigned a value at most once in the program text
- Easy for a basic block:
 - assign to a fresh variable at each stmt.
 - Each use uses the most recently defined var.
 - (Similar to Value Numbering)
- What about at joins in the CFG?
 - Use a notational fiction: a \(\Phi \) function

\(\Phi \) function

- \(\Phi \) merges multiple definitions along multiple control paths into a single definition.
- At a basic block with \(p \) predecessors, there are \(p \) arguments to the \(\Phi \) function.
- How do we choose which \(x_i \) to use?
 - We don’t really care!
 - If we care, use moves on each incoming edge
"Implementing" Φ

- $c_1 \leftarrow 12$
- \text{if (i)}
 - $a_2 \leftarrow b + 2$
 - $c_2 \leftarrow y + 1$
 - $a_3 \leftarrow a_2$
 - $c_3 \leftarrow c_2$

- $a_1 \leftarrow x + y$
- $b_1 \leftarrow a_1 + x$
- $a_3 \leftarrow a_1$
- $c_3 \leftarrow c_1$

Trivial SSA

- Each assignment generates a fresh variable.
- At each join point insert Φ functions for all live variables.

Way too many Φ functions inserted.

Minimal SSA

- Each assignment generates a fresh variable.
- At each join point insert Φ functions for all live variables with multiple outstanding defs.

Another Example

- $a \leftarrow 0$
- $\Phi(a_1, a_2)$
- $c_3 \leftarrow \Phi(c_1, c_2)$
- $b_2 \leftarrow a_3 + 1$
- $c_2 \leftarrow c_1 + b_2$
- $a_3 \leftarrow b_2 * 2$
- \text{if $a_2 < N$}

Notice use of c_1
When Do We Insert ϕ?

If there is a def of a in block 5, which nodes need a $\phi()$?

CFG

When do we insert ϕ?

- We insert a ϕ function for variable A in block Z iff:
 - A was defined more than once before
 - (i.e., A defined in X and Y AND $X \neq Y$)
 - There exists a non-empty path from x to z, P_{xz}, and a non-empty path from y to z, P_{yz}, s.t.
 - $P_{xz} \cap P_{yz} = \{ z \}$
 - $z \notin P_{xy}$ or $z \notin P_{yx}$ where $P_{xy} = P_{xy} \rightarrow z$ and $P_{yx} = P_{yx} \rightarrow z$
 - Entry block contains an implicit def of all vars
- Note: $A = \phi(\ldots)$ is a def of A

Dominance Property of SSA

- In SSA, definitions dominate uses.
 - If x is used in $x \leftarrow \phi(\ldots, x, \ldots)$, then $BB(x)$ dominates i^{th} predecessor of $BB(\text{PHI})$
 - If x is used in $y \leftarrow \ldots x \ldots$, then $BB(x)$ dominates $BB(y)$
- We can use this for an efficient algorithm to convert to SSA

Dominance

If there is a def of a in block 5, which nodes need a $\phi()$?

CFG

D-Tree

x strictly dominates w ($x \text{ sdom } w$) iff x dom w AND $x \neq w$
Using Dominance Frontier to Compute SSA

- place all $\phi()$
- Rename all variables

Using Dominance Frontier to Place $\phi()$

- Gather all the defsites of every variable
- Then, for every variable
 - foreach defsite
 - foreach node in $\text{Dominance Frontier(defsite)}$
 - if we haven't put $\phi()$ in node, then put one in
 - if this node didn't define the variable before, then add this node to the defsites
- This essentially computes the Iterated Dominance Frontier on the fly, inserting the minimal number of $\phi()$ necessary
Using Dominance Frontier to Place $\phi()$

foreach node n {
 foreach variable v defined in n {
 $\text{orig}[n] \cup= \{v\}$
 $\text{defsites}[v] \cup= \{n\}$
 }
}

foreach variable v {
 $W = \text{defsites}[v]$
 while W not empty {
 $n = \text{remove node from } W$
 foreach y in $\text{DF}[n]$
 if $y \notin \text{PHI}[v]$ {
 "insert $v \leftarrow \Phi(v,v,\ldots)$ at top of y"
 $\text{PHI}[v] = \text{PHI}[v] \cup \{y\}$
 if $v \notin \text{orig}[y]$:
 $W = W \cup \{y\}$
 }
 }
 }
}

Renaming Variables

- **Algorithm:**
 - Walk the D-tree, renaming variables as you go
 - Replace uses with most recent renamed def

- For straight-line code this is easy
- What if there are branches and joins?
 - use the closest def such that the def is above the use in the D-tree

- **Easy implementation:**
 - for each var: rename (v)
 - rename(v): replace uses with top of stack
 - at def: push onto stack
 - call rename(v) on all children in D-tree
 - for each def in this block pop from stack

Compute Dominance Tree

Compute Dominance Frontiers
Let's insert \(\Phi() \) and compute \(\Phi() \):

1. \(i \leftarrow 1 \)
2. \(j \leftarrow 1 \)
3. \(k \leftarrow 0 \)
4. \(j \leftarrow \Phi(j,j) \)
5. \(k \leftarrow \Phi(k,k) \)
6. \(k < 100? \)
7. \(j < 20? \)
8. \(\text{return } j \)
9. \(j \leftarrow 1 \)
10. \(k \leftarrow k + 1 \)
11. \(j \leftarrow j \)
12. \(k \leftarrow k + 2 \)
13. \(j \leftarrow \Phi(j,j) \)
14. \(k \leftarrow \Phi(k,k) \)

DFs

1. \(i \leftarrow 1 \) \(\{i,j,k\} \)
2. \(j \leftarrow \Phi(j,j) \) \(\{j\} \)
3. \(k \leftarrow \Phi(k,k) \) \(\{k\} \)
4. \(k < 100? \) \(\text{defsites[v]} \)
5. \(j < 20? \) \(\text{return } j \)

Rename Vars

1. \(i_1 \leftarrow 1 \)
2. \(j_1 \leftarrow 1 \)
3. \(k_1 \leftarrow 0 \)
4. \(j_2 \leftarrow \Phi(j_1,j_1) \) \(\{j_1\} \)
5. \(k_2 \leftarrow \Phi(k_1,k_1) \) \(\{k_1\} \)
6. \(k_2 < 100? \)
7. \(j_2 < 20? \) \(\text{return } j_2 \)
8. \(j_3 \leftarrow 1 \)
9. \(k_3 \leftarrow k_1 + 1 \)
10. \(j_3 \leftarrow j_1 \)
11. \(k_3 \leftarrow k_1 + 2 \)
12. \(j_4 \leftarrow \Phi(j_3,j_3) \) \(\{j_3\} \)
13. \(k_4 \leftarrow \Phi(k_3,k_3) \) \(\{k_3\} \)

Computing DF(n)

\(n \) dom a
\(n \) dom b
\(n \) dom c
Computing the Dominance Frontier

compute-DF(n)
S = {}
foreach node y in succ[n]
 if idom(y) ≠ n
 S = S ∪ { y }
foreach child of n, c, in D-tree
 compute-DF(c)
 foreach w in DF[c]
 if w in DF[n]
 S = S ∪ { w }
DF[n] = S

SSA Properties

- Only 1 assignment per variable
- Definitions dominate uses