Motivation for Studying Region-Based Analysis

- Exploit the structure of block-structured programs in data flow
- Tie in several concepts studied:
 - Use of structure in induction variables, loop invariant
 - motivated by nature of the problem
 - Iterative algorithm for data flow
 - This lecture: an alternative algorithm
 - Reducibility
 - all retreating edges of DFST are back edges
 - reducible graphs converge quickly
 - This lecture: algorithm exploits & requires reducibility
- Usefulness in practice
 - Faster for "harder" analyses
 - Useful for analyses related to structure
- Theoretically interesting: better understanding of data flow

Basic Idea

In Iterative Analysis:
- DEFINITION: Transfer function F_B:
 summarize effect from beginning to end of basic block B

In Region-Based Analysis:
- DEFINITION: Transfer function $F_{R,B}$:
 summarize effect from beginning of R to end of basic block B

- Recursively construct a larger region R from smaller regions
- construct $F_{R,B}$ from transfer functions for smaller regions
 until the program is one region
- Let F be the region for the entire program,
 and v be initial value at entry node
 - $\text{out}(B) = F_{R,F}(v)$
 - $\text{in}[B] = \land_{B'} \text{out}[B']$, where B' is a predecessor of B
II. Algorithm

1. Operations on transfer functions
2. How to build nested regions?
3. How to construct transfer functions that correspond to the larger regions?

1. Operations on Transfer Functions

- Example: Reaching Definitions

 $F(x) = \text{Gen} \cup (x - \text{Kill})$

 $F_2(F_1(x)) = \text{Gen}_2 \cup (F_1(x) - \text{Kill}_2)
 = \text{Gen}_2 \cup (\text{Gen}_1 \cup (x - \text{Kill}_1)) - \text{Kill}_2
 = \text{Gen}_2 \cup (\text{Gen}_1 - \text{Kill}_2) \cup (x - (\text{Kill}_1 \cup \text{Kill}_2))$

- $F_1(x) \land F_2(x) = \text{Gen}_1 \cup (x - \text{Kill}_1)
 \cup \text{Gen}_2 \cup (x - \text{Kill}_2)
 = (\text{Gen}_1 \cup \text{Gen}_2) \cup (x - (\text{Kill}_1 \cap \text{Kill}_2))$

- $F^*(x) \leq F^n(x), \forall n \geq 0$

 $= x \cup F(x) \cup F(F(x)) \cup ...$

 $= x \cup (\text{Gen} \cup (x - \text{Kill})) \cup (\text{Gen} \cup ((\text{Gen} \cup (x - \text{Kill})) - \text{Kill})) \cup ...$

 $= \text{Gen} \cup (x - \emptyset)$

2. Structure of Nested Regions (An Example)

- A region in a flow graph is a set of nodes that
 includes a header, which dominates all other nodes in a region
- T1-T2 rule (Hecht & Ullman)
 - T1: Remove a loop
 If n is a node with a loop, i.e. an edge $n\rightarrow n$, delete that edge
 - T2: Remove a vertex
 If there is a node n that has a unique predecessor, m,
 then m may consume n by deleting n and making all successors of n be successors of m.

Example

- In reduced graph:
 - each vertex represents a subgraph of original graph (a region).
 - each edge represents an edge in original graph
- Limit flow graph: result of exhaustive application of T1 and T2
 - independent of order of application.
 - if limit flow graph has a single vertex \(\Rightarrow \) reducible
- Can define larger regions (e.g. Allen&Cocke's intervals)
 - simple regions \(\Rightarrow \) simple composition rules for transfer functions
Transfer Functions for T2 Rule

- **Transfer function** $F_{R,B}$: summarizes the effect from beginning of R to end of B
- $F_{R,(H2)}$: summarizes the effect from beginning of R to beginning of $H2$
 - Unchanged for blocks B in region R_1: $F_{R,B} = F_{R_1,B}$
 - $F_{R,(H2)} = \bigwedge P F_{R,P}$, where p is a predecessor of $H2$
 - For blocks B in region R_2: $F_{R,B} = F_{R_2,B} \cdot F_{R,(H2)}$

Transfer Functions for T1 Rule

- **Transfer Function** $F_{R,B}$:
 - $F_{R,(H)} = (\bigwedge P F_{R,P})^*$, where p is a predecessor of H in R
 - $F_{R,B} = F_{R_1,B} \cdot F_{R,(H)}$

First Example

<table>
<thead>
<tr>
<th>R</th>
<th>T0</th>
<th>T1</th>
<th>R'</th>
<th>F_{R,B_1}</th>
<th>F_{R,B_2}</th>
<th>F_{R,B_3}</th>
<th>F_{R,B_4}</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>T2</td>
<td>B2</td>
<td>R2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>R2</td>
<td>T2</td>
<td>B1</td>
<td>R1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>R3</td>
<td>T1</td>
<td>R2</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>R4</td>
<td>T2</td>
<td>B4</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

- **R**: region name
- **R’**: region whose header will be subsumed
III. Complexity of Algorithm

<table>
<thead>
<tr>
<th>R</th>
<th>F_{R,B}</th>
<th>F_{R,B}</th>
<th>F_{R,B}</th>
<th>F_{R,B}</th>
<th>F_{R,B}</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_1</td>
<td>T_1</td>
<td>T_2</td>
<td>R'</td>
<td>F_{R,B}</td>
<td>F_{R,B}</td>
</tr>
<tr>
<td>R_2</td>
<td>T_2</td>
<td>R_1</td>
<td>F_{R,B}</td>
<td>F_{R,B}</td>
<td>F_{R,B}</td>
</tr>
<tr>
<td>R_3</td>
<td>T_3</td>
<td>R_2</td>
<td>F_{R,B}</td>
<td>F_{R,B}</td>
<td>F_{R,B}</td>
</tr>
<tr>
<td>R_4</td>
<td>T_4</td>
<td>R_3</td>
<td>F_{R,B}</td>
<td>F_{R,B}</td>
<td>F_{R,B}</td>
</tr>
</tbody>
</table>

Optimization

- Let m = number of edges, n = number of nodes
- Ideas for optimization
 - If we compute F_{R,B} for every region B is in, then it is very expensive
 - We are ultimately only interested in the entire region (E); we need to compute only F_{E,B} for every B.
 - There are many common subexpressions between F_{E,B}, F_{E,B}...
 - Number of F_{E,B} calculated = m
 - Also, we need to compute F_{R,in(R')}, where R' represents the region whose header is subsumed.
 - Number of F_{E,B} calculated, where R is not final = n
 - Total number of F_{E,B} calculated: (m + n)

- Data structure keeps “header” relationship
 - Practical algorithm: \(O(m \log n) \)
 - Complexity: \(O(m \alpha(m,n)) \), \(\alpha \) is inverse Ackermann function

Reductibility

- If no T1, T2 is applicable before graph is reduced to single node, then split node and continue
- Worst case: exponential
- Most graphs (including GOTO programs) are reducible

IV. Comparison with Iterative Data Flow

- Applicability
 - Definitions of \(F^* \) can make technique more powerful than iterative algorithms
 - Backward flow: reverse graph is not typically reducible.
 - Requires more effort to adapt to backward flow than iterative algorithm.
 - More important for interprocedural optimization
- Speed
 - Irreducible graphs
 - Iterative algorithm can process irreducible parts uniformly
 - Serious “irreducibility” can be slow with region-based analysis
 - Reducible graph & Cycles do not add information (common)
 - Iterative: (depth + 2) passes
 - Depth is 2.75 average, independent of code length
 - Region-based analysis: Theoretically almost linear, typically \(O(m \log n) \)
 - Reducible & Cycles add information
 - Iterative takes longer to converge
 - Region-based analysis remains the same