Lecture 12
Region-Based Analysis

I. Basic Idea
II. Algorithm
III. Optimization and Complexity
IV. Comparing region-based analysis with iterative algorithms

Reading: ALSU 9.7
Motivation for Studying Region-Based Analysis

- Exploit the structure of block-structured programs in data flow
- Tie in several concepts studied:
 - Use of structure in induction variables, loop invariant
 - motivated by nature of the problem
 - *This lecture: can we use structure for speed?*
 - Iterative algorithm for data flow
 - *This lecture: an alternative algorithm*
 - Reducibility
 - all retreating edges of DFST are back edges
 - reducible graphs converge quickly
 - *This lecture: algorithm exploits & requires reducibility*
- **Usefulness in practice**
 - Faster for “harder” analyses
 - Useful for analyses related to structure
- **Theoretically interesting:** better understanding of data flow
I. Big Picture
Basic Idea

• **In Iterative Analysis:**
 - DEFINITION: Transfer function F_B:
 summarize effect from beginning to end of basic block B

• **In Region-Based Analysis:**
 - DEFINITION: Transfer function $F_{R,B}$:
 summarize effect from beginning of R to end of basic block B

 - Recursively
 construct a larger region R from smaller regions
 construct $F_{R,B}$ from transfer functions for smaller regions
 until the program is one region

 - Let P be the region for the entire program,
 and v be initial value at entry node
 \[\text{out}[B] = F_{P,B}(v) \]
 \[\text{in}[B] = \land B' \text{ out}[B'], \text{ where } B' \text{ is a predecessor of } B \]
II. Algorithm

1. Operations on transfer functions

2. How to build nested regions?

3. How to construct transfer functions that correspond to the larger regions?
1. Operations on Transfer Functions

- **Example:** Reaching Definitions

- \(F(x) = \text{Gen} \cup (x - \text{Kill}) \)
- \(F_2(F_1(x)) = \text{Gen}_2 \cup (F_1(x) - \text{Kill}_2) \)
 - \(= \text{Gen}_2 \cup (\text{Gen}_1 \cup (x - \text{Kill}_1)) - \text{Kill}_2 \)
 - \(= \text{Gen}_2 \cup (\text{Gen}_1 - \text{Kill}_2) \cup (x - (\text{Kill}_1 \cup \text{Kill}_2)) \)
- \(F_1(x) \land F_2(x) = \text{Gen}_1 \cup (x - \text{Kill}_1) \cup \text{Gen}_2 \cup (x - \text{Kill}_2) \)
 - \(= (\text{Gen}_1 \cup \text{Gen}_2) \cup (x - (\text{Kill}_1 \cap \text{Kill}_2)) \)
- \(F^*(x) \leq F^n(x), \ \forall \ n \geq 0 \)
 - \(= x \cup F(x) \cup F(F(x)) \cup ... \)
 - \(= x \cup (\text{Gen} \cup (x - \text{Kill})) \cup (\text{Gen} \cup ((\text{Gen} \cup (x - \text{Kill})) - \text{Kill})) \cup ... \)
 - \(= \text{Gen} \cup (x - \emptyset) \)
2. Structure of Nested Regions (An Example)

- **A region** in a flow graph is a set of nodes that
 - includes a **header**, which dominates all other nodes in a region

- **T1-T2 rule** (Hecht & Ullman)
 - **T1**: Remove a loop
 - If \(n \) is a node with a loop, i.e. an edge \(n \rightarrow n \), delete that edge
 - **T2**: Remove a vertex
 - If there is a node \(n \) that has a unique predecessor, \(m \), then \(m \) may consume \(n \) by
 - deleting \(n \) and making all successors of \(n \) be successors of \(m \).
Example

- In reduced graph:
 - each vertex represents a subgraph of original graph (a region).
 - each edge represents an edge in original graph
- Limit flow graph: result of exhaustive application of T1 and T2
 - independent of order of application.
 - if limit flow graph has a single vertex \(\rightarrow\) reducible
- Can define larger regions (e.g. Allen&Cocke’s intervals)
 - simple regions \(\rightarrow\) simple composition rules for transfer functions
3. Transfer Functions for T2 Rule

- **Transfer function**
 - $F_{R,B}$: summarizes the effect from beginning of R to end of B
 - $F_{R,in(H2)}$: summarizes the effect from beginning of R to beginning of $H2$
 - Unchanged for blocks B in region R_1 ($F_{R,B} = F_{R1,B}$)
 - $F_{R,in(H2)} = \land_p F_{R,P}$, where p is a predecessor of $H2$
 - For blocks B in region R_2: $F_{R,B} = F_{R2,B} \cdot F_{R,in(H2)}$
Transfer Functions for T1 Rule

Transfer Function $F_{R,B}$
- $F_{R,in(H)} = (\wedge_p F_{R1,p})^*$, where p is a predecessor of H in R
- $F_{R,B} = F_{R1,B} \cdot F_{R,in(H)}$
First Example

![Diagram of region-based analysis](image)

<table>
<thead>
<tr>
<th>R</th>
<th>T₁/T₂</th>
<th>R’</th>
<th>(F_{R.\text{in}(R')})</th>
<th>(F_{R,B1})</th>
<th>(F_{R,B2})</th>
<th>(F_{R,B3})</th>
<th>(F_{R,B4})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_1)</td>
<td>T₂</td>
<td>(B_2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(R_2)</td>
<td>T₂</td>
<td>(R_1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(R_3)</td>
<td>T₁</td>
<td>(R_2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(R_4)</td>
<td>T₂</td>
<td>(B_4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- \(R \): region name
- \(R' \): region whose header will be subsumed
First Example

<table>
<thead>
<tr>
<th>R</th>
<th>T_1/T_2</th>
<th>R'</th>
<th>$F_{R,in(R')}^*$</th>
<th>$F_{R,B1}$</th>
<th>$F_{R,B2}$</th>
<th>$F_{R,B3}$</th>
<th>$F_{R,B4}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_1</td>
<td>T_2</td>
<td>B_2</td>
<td>$F_{R1,B1}$</td>
<td>F_{B1}</td>
<td>$F_{B2} \cdot F_{R1,in(B2)}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_2</td>
<td>T_2</td>
<td>R_1</td>
<td>F_{B3}</td>
<td>$F_{R1,B1} \cdot F_{R2,in(R1)}$</td>
<td>$F_{R1,B2} \cdot F_{R2,in(R1)}$</td>
<td>F_{B3}</td>
<td></td>
</tr>
<tr>
<td>R_3</td>
<td>T_1</td>
<td>R_2</td>
<td>$(F_{R2B1} \land F_{R2B2})^*$</td>
<td>$F_{R2,B1} \cdot F_{R3,in(R2)}$</td>
<td>$F_{R2,B2} \cdot F_{R3,in(R2)}$</td>
<td>$F_{R2,B3} \cdot F_{R3,in(R2)}$</td>
<td></td>
</tr>
<tr>
<td>R_4</td>
<td>T_2</td>
<td>B_4</td>
<td>$F_{R3B3} \land F_{R3B2}$</td>
<td>$F_{R3,B1}$</td>
<td>$F_{R3,B2}$</td>
<td>$F_{R3,B3}$</td>
<td>$F_{B4} \cdot F_{R4,in(B4)}$</td>
</tr>
</tbody>
</table>

- R: region name
- R': region whose header will be subsumed
III. Complexity of Algorithm

<table>
<thead>
<tr>
<th>R</th>
<th>$T_{1/T}$</th>
<th>R'</th>
<th>$F_{R, in(R')}$</th>
<th>$F_{R, B1}$</th>
<th>$F_{R, B2}$</th>
<th>$F_{R, B3}$</th>
<th>$F_{R, B4}$</th>
<th>$F_{R, B5}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_1</td>
<td>T_2</td>
<td>B_2</td>
<td>F_{B2}</td>
<td>$F_{B1} \cdot F_{B2}$</td>
<td>F_{B2}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_2</td>
<td>T_2</td>
<td>R_1</td>
<td>F_{B3}</td>
<td>$F_{R1, B1} \cdot F_{B3}$</td>
<td>$F_{R1, B2} \cdot F_{B3}$</td>
<td>F_{B3}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_3</td>
<td>T_2</td>
<td>R_2</td>
<td>F_{B4}</td>
<td>$F_{R2, B1} \cdot F_{B4}$</td>
<td>$F_{R2, B2} \cdot F_{B4}$</td>
<td>$F_{R2, B3} \cdot F_{B4}$</td>
<td>F_{B4}</td>
<td></td>
</tr>
<tr>
<td>R_4</td>
<td>T_2</td>
<td>R_3</td>
<td>F_{B5}</td>
<td>$F_{R3, B1} \cdot F_{B5}$</td>
<td>$F_{R3, B2} \cdot F_{B5}$</td>
<td>$F_{R3, B3} \cdot F_{B5}$</td>
<td>$F_{B4} \cdot F_{B5}$</td>
<td>F_{B5}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R</th>
<th>$F_{R4, in(R)}$</th>
<th>B</th>
<th>$F_{R4, B}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_4</td>
<td>I</td>
<td>B_5</td>
<td>$F_{B5} \cdot I$</td>
</tr>
<tr>
<td>R_3</td>
<td>$F_{B5} \cdot F_{R4, in(R4)}$</td>
<td>B_4</td>
<td>$F_{B4} \cdot F_{R4, in(R3)}$</td>
</tr>
<tr>
<td>R_2</td>
<td>$F_{B4} \cdot F_{R4, in(R3)}$</td>
<td>B_3</td>
<td>$F_{B3} \cdot F_{R4, in(R2)}$</td>
</tr>
<tr>
<td>R_1</td>
<td>$F_{B3} \cdot F_{R4, in(R2)}$</td>
<td>B_2</td>
<td>$F_{B2} \cdot F_{R4, in(R1)}$</td>
</tr>
<tr>
<td>B_1</td>
<td>$F_{B2} \cdot F_{R4, in(R1)}$</td>
<td>B_1</td>
<td>$F_{B1} \cdot F_{R4, in(B1)}$</td>
</tr>
</tbody>
</table>

Carnegie Mellon

15-745: Region-Based Analysis

Todd C. Mowry
Optimization

- Let $m = \text{number of edges}$, $n = \text{number of nodes}$

- Ideas for optimization
 - If we compute $F_{R,B}$ for every region B is in, then it is very expensive
 - We are ultimately only interested in the entire region (E); we need to compute only $F_{E,B}$ for every B.
 - There are many common subexpressions between F_{E,B_1}, F_{E,B_2}, ...
 - Number of $F_{E,B}$ calculated = m
 - Also, we need to compute $F_{R,\text{in}(R')}$, where R' represents the region whose header is subsumed.
 - Number of $F_{R,B}$ calculated, where R is not final = n

- Total number of $F_{R,B}$ calculated: $(m + n)$
 - Data structure keeps “header” relationship
 - Practical algorithm: $O(m \log n)$
 - Complexity: $O(m \alpha(m,n))$, α is inverse Ackermann function
Reducibility

- If no T_1, T_2 is applicable before graph is reduced to single node, then split node and continue
- Worst case: exponential
- Most graphs (including GOTO programs) are reducible
IV. Comparison with Iterative Data Flow

• **Applicability**
 – Definitions of F* can make technique more powerful than iterative algorithms
 – Backward flow: reverse graph is not typically reducible.
 • Requires more effort to adapt to backward flow than iterative algorithm
 – More important for interprocedural optimization

• **Speed**
 – Irreducible graphs
 • Iterative algorithm can process irreducible parts uniformly
 • Serious “irreducibility” can be slow with region-based analysis
 – Reducible graph & Cycles do not add information (common)
 • Iterative: (depth + 2) passes
 depth is 2.75 average, independent of code length
 • Region-based analysis: Theoretically almost linear, typically O(m log n)
 – Reducible & Cycles add information
 • Iterative takes longer to converge
 • Region-based analysis remains the same