Lecture 11
Lazy Code Motion

I. Forms of redundancy (quick review)
• global common subexpression elimination
• loop invariant code motion
• partial redundancy

II. Lazy Code Motion Algorithm
• Mathematical concept: a cut set
• Basic technique (anticipation)
• 3 more passes to refine algorithm

Reading: Chapter 9.5

Overview
• Eliminates many forms of redundancy in one fell swoop
• Originally formulated as 1 bi-directional analysis
• Lazy code motion algorithm
 – formulated as 4 separate uni-directional passes
 • backward, forward, forward, backward

I. Common Subexpression Elimination
```
  a = b + c
  d = b + c
```
• A common expression may have different values on different paths!
• On every path reaching p,
 – expression b+c has been computed
 – b, c not overwritten after the expression

Loop Invariant Code Motion
```
  a = b + c
  t = b + c
  a = t
```
• Given an expression (b+c) inside a loop,
 – does the value of b+c change inside the loop?
 – is the code executed at least once?
Partial Redundancy

- Can we place calculations of \(b+c\) such that no path re-executes the same expression

- Partial Redundancy Elimination (PRE)
 - subsumes:
 - global common subexpression (full redundancy)
 - loop invariant code motion (partial redundancy for loops)

II. Lazy Code Motion

- Key observation:
 - A bi-directional (!) data flow problem can be replaced with several unidirectional data flow problems \(\rightarrow\) much easier
 - Better result as well

Preparing the Flow Graph

- Definition: Critical edges
 - source basic block has multiple successors
 - destination basic block has multiple predecessors

- Modify the flow graph: (treat every statement as a basic block)
 - To keep algorithm simple: restrict placement of instructions to the beginning of a basic block
 - Add a basic block for every edge that leads to a basic block with multiple predecessors (not just on critical edges)

Full Redundancy: A Cut Set in a Graph

- Full redundancy at \(p\): expression \(a+b\) redundant on all paths
 - a cut set: nodes that separate entry from \(p\)
 - a cut set contains calculation of \(a+b\)
 - \(a, b\), not redefined
Partial Redundancy: Completing a Cut Set

- Partial redundancy at p: redundant on some but not all paths
 - Add operations to create a cut set containing $a+b$
 - Note: Moving operations up can eliminate redundancy
- Constraint on placement: no wasted operation
 - $a+b$ is "anticipated" at B if its value computed at B will be used along ALL subsequent paths
 - a, b not redefined, no branches that lead to exit without use
- Range where $a+b$ is anticipated \rightarrow Choice

Pass 1: Anticipated Expressions

This pass does most of the heavy lifting in eliminating redundancy

- Backward pass: Anticipated expressions
 Anticipated[b.in]: Set of expressions anticipated at the entry of b
 - An expression is anticipated if its value computed at point p will be used along ALL subsequent paths
 - First approximation:
 - place operations at the frontier of anticipation (boundary between not anticipated and anticipated)

Examples (1)

- See the algorithm in action

Examples (2)

- Cannot eliminate all redundancy
Examples (3)

Do you know how the algorithm works without simulating it?

Pass 2: Place As Early As Possible

First approximation: frontier between “not anticipated” & “anticipated”

Complication: anticipation may oscillate

Pretend we calculate expression e whenever it is anticipated

e will be available at p if e has been “anticipated but not subsequently killed” on all paths reaching p

<table>
<thead>
<tr>
<th>Available Expressions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain: Sets of expressions</td>
</tr>
<tr>
<td>Direction: forward</td>
</tr>
<tr>
<td>Transfer Function: $f_{b}(x) = (\text{anticipated}[b].\text{in} \cup x) - \text{EKill}[b]$</td>
</tr>
<tr>
<td>Boundary: out(entry) = \emptyset</td>
</tr>
<tr>
<td>Initialization: out(b) = (all expressions)</td>
</tr>
</tbody>
</table>

Pass 3: Lazy Code Motion

Let’s be lazy without introducing redundancy.

Delay creating redundancy to reduce register pressure

An expression e is postponable at a program point p if all paths leading to p have seen the earliest placement of e but not a subsequent use

<table>
<thead>
<tr>
<th>Postponable Expressions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain: Sets of expressions</td>
</tr>
<tr>
<td>Direction: forward</td>
</tr>
<tr>
<td>Transfer Function: $f_{b}(x) = (\text{earliest}[b].\text{in} \cup x) - \text{EUse}[b]$</td>
</tr>
<tr>
<td>Boundary: out(entry) = \emptyset</td>
</tr>
<tr>
<td>Initialization: out(b) = (all expressions)</td>
</tr>
</tbody>
</table>
Latest: frontier at the end of “postponable” cut set

- \(\text{latest}[b] = (\text{earliest}[b] \cup \text{postponable.in}[b]) \cap (\text{EUse}_b \cup \neg \bigwedge \forall s \in \text{succ}[b] (\text{earliest}[s] \cup \text{postponable.in}[s]))) \)
 - OK to place expression: earliest or postponable
 - Need to place at \(b \) if either
 - used in \(b \), or
 - not OK to place in one of its successors
- Works because of pre-processing step (an empty block was introduced to an edge if the destination has multiple predecessors)
 - if \(b \) has a successor that cannot accept postponement, \(b \) has only one successor
 - The following does not exist:

Code Transformation

- For all basic blocks \(b \),
 - if \((x+y) \in (\text{latest}[b] \cap \text{used.out}[b]) \)
 - at beginning of \(b \):
 - add new \(t = x+y \)
 - replace every original \(x+y \) by \(t \)

Pass 4: Cleaning Up

Finally, this is easy, it is the cleanup

- Eliminate temporary variable assignments unused beyond current block
- Compute: \(\text{Used.out}[b] \): sets of used (live) expressions at exit of \(b \)

<table>
<thead>
<tr>
<th>Used Expressions</th>
<th>Domain</th>
<th>Sets of expressions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Direction</td>
<td>backward</td>
</tr>
<tr>
<td></td>
<td>Transfer Function</td>
<td>(f_b(x) = (\text{EUse}_b \cup x) \cap \text{latest}[b])</td>
</tr>
<tr>
<td>Boundary</td>
<td>(\text{in[exit]} = \emptyset)</td>
<td></td>
</tr>
<tr>
<td>Initialization</td>
<td>(\text{in}[b] = \emptyset)</td>
<td></td>
</tr>
</tbody>
</table>

4 Passes for Partial Redundancy Elimination

- Heavy lifting: Cannot introduce operations not executed originally
 - Pass 1 (backward): Anticipation: range of code motion
 - Placing operations at the frontier of anticipation gets most of the redundancy
- Squeezing the last drop of redundancy:
 - An anticipation frontier may cover a subsequent frontier
 - Pass 2 (forward): Availability
 - Earliest: anticipated, but not yet available
 - Push the cut set out -- as late as possible
 To minimize register lifetimes
 - Pass 3 (forward): Postponability: move it down provided it does not create redundancy
 - Latest: where it is used or the frontier of postponability
- Cleaning up
 - Pass 4: Remove temporary assignments
Remarks

• Powerful algorithm
 – Finds many forms of redundancy in one unified framework
• Illustrates the power of data flow
 – Multiple data flow problems