Lecture 10
Partial Redundancy Elimination

• Global code motion optimization
• Remove partially redundant expressions
• Loop invariant code motion
• Can be extended to do Strength Reduction
• No loop analysis needed
• Bidirectional flow problem

Redundancy

- A Common Subexpression is a Redundant Computation

\[
\begin{align*}
t_1 &= a + b \\
t_2 &= a + b \\
t_3 &= a + b
\end{align*}
\]

- Occurrence of expression \(E\) at \(P\) is redundant if \(E\) is available there:
 - \(E\) is evaluated along every path to \(P\), with no operands redefined since.
 - Redundant expression can be eliminated

Partial Redundancy

• Partially Redundant Computation

\[
\begin{align*}
t_1 &= a + b \\
t_3 &= a + b
\end{align*}
\]

- Occurrence of expression \(E\) at \(P\) is partially redundant if \(E\) is partially available there:
 - \(E\) is evaluated along at least one path to \(P\), with no operands redefined since.
 - Partially redundant expression can be eliminated if we can insert computations to make it fully redundant.

References

Loop Invariants are Partial Redundancies

• Loop invariant expression is partially redundant

\[a = \ldots \]

\[t_1 = a + b \]

• As before, partially redundant computation can be eliminated if we
insert computations to make it fully redundant.
• Remaining copies can be eliminated through copy propagation or more
complex analysis of partially redundant assignments.

Partial Redundancy Elimination

• The Method:
 1. Insert Computations to make partially redundant expression(s) fully
redundant.
 2. Eliminate redundant expression(s).

• Issues [Outline of Lecture]:
 1. What expression occurrences are candidates for elimination?
 2. Where can we safely insert computations?
 3. Where do we want to insert them?
• For this lecture, we assume one expression of interest, \(a + b \).
 – In practice, with some restrictions, can do many expressions in
parallel.

Which Occurrences Might Be Eliminated?

• In CSE,
 – \(E \) is available at \(P \) if it is previously evaluated along every
 path to \(P \), with no subsequent redefinitions of operands.
 – If so, we can eliminate computation at \(P \).
• In PRE,
 – \(E \) is partially available at \(P \) if it is previously evaluated along at
 least one path to \(P \), with no subsequent redefinitions of operands.
 – If so, we might be able to eliminate computation at \(P \), if we can
insert computations to make it fully redundant.
• Occurrences of \(E \) where \(E \) is partially available are candidates for
elimination.

Finding Partially Available Expressions

• Forward flow problem
 – Lattice = \(\{0, 1\} \), meet is union (\(\lor \)), Top = 0 (not PAVAIL), entry = 0
 \[\text{PAVOUT}[i] = (\text{PAVIN}[i] - \text{KILL}[i]) \cup \text{AVLOC}[i] \]
 \[\text{PAVIN}[i] = \begin{cases} i = \text{entry} \\ \bigcup_{p \in \text{preds}(i)} \text{PAVOUT}[p] \end{cases} \text{ otherwise} \]
• For a block,
 – Expression is locally available (AVLOC) if downwards exposed.
 – Expression is killed (KILL) if any assignments to operands.
Partial Availability Example

- For expression \(a + b \).

\[
\begin{align*}
a &= \ldots \\
t_1 &= a + b \\
a &= \ldots \\
t_2 &= a + b \\
\end{align*}
\]

- Occurrence in loop is partially redundant.

Where Can We Insert Computations?

- Safety: never introduce a new expression along any path.

\[
\begin{align*}
t_1 &= a + b \\
t_3 &= a + b \\
\end{align*}
\]

- Insertion could introduce exception, change program behavior.
- If we can add a new basic block, can insert safely in most cases.
- Solution: insert expression only where it is anticipated.

- Performance: never increase the \# of computations on any path.
- Under simple model, guarantees program won’t get worse.
- Reality: might increase register lifetimes, add copies, lose.

Finding Anticipated Expressions

- Backward flow problem
 - Lattice = \{0, 1\}, meet is intersect \(\cap\), top = 1 (ANT), exit = 0
 - \(\text{ANTIN}[i] = \text{ANTLOC}[i] \cup (\text{ANTOUT}[i] \cdot \text{KILL}[i])\)
 - \(\text{ANTOUT}[i] = \begin{cases} \text{ANTIN}[s] & i = \text{exit} \\ \cap \text{ANTIN}[s] & \text{otherwise} \end{cases}\)

- For a block,
 - Expression locally anticipated (ANTLOC) if upwards exposed.

\[
\begin{align*}
a &= \ldots \\
\ldots &= a + b \\
\ldots &= a + b \\
a &= \ldots \\
\end{align*}
\]

Anticipation Example

- For expression \(a + b \).

\[
\begin{align*}
a &= \ldots \\
t_1 &= a + b \\
a &= \ldots \\
t_2 &= a + b \\
\end{align*}
\]

- Expression is anticipated at end of first block.
- Computation may be safely inserted there.
Where Do We Want to Insert Computations?

- Morel-Renvoise and variants: “Placement Possible”
 - Dataflow analysis shows where to insert:
 - PPIN = “Placement possible at entry of block or before.”
 - POUT = “Placement possible at exit of block or before.”
 - Insert at earliest place where PP = 1.
 - Only place at end of blocks,
 - PPIN really means “Placement possible or not necessary in each predecessor block.”
 - Don’t need to insert where expression is already available.
 - INSERT[i] = PPOUT[i] \(\cap \) \(\neg \) PPIN[i] \(\cup \) \(\neg \) KILL[i] \(\cap \) \(\neg \) AVOUT[i]

- Remove (upwards-exposed) computations where PPIN=1.
 - DELETE[i] = PPIN[i] \(\cap \) ANTLIN[i]

Where Do We Want to Insert? Example

- PPOUT: we want to place at output of this block only if
 - we want to place at entry of all successors
- PPIN: we want to place at start of this block only if (all of):
 - we have a local computation to place, or a placement at the end of this block which we can move up
 - we want to move computation to output of all predecessors where expression is not already available (don’t insert at input)
 - we can gain something by placing it here (PAVIN)

- Forward or Backward? BOTH!
- Problem is bidirectional, but lattice \([0, 1]\) is finite, so
 - as long as transfer functions are monotone, it converges.

Computing “Placement Possible”

- PPOUT: we want to place at output of this block only if
 - we want to place at entry of all successors
 - PPOUT[i] = \(\begin{cases} 0 & i = \text{exit} \\ \cap \text{PPIN}[s] & i = \text{entry} \end{cases} \)
- PPIN: we want to place at start of this block only if (all of):
 - we have a local computation to place, or a placement at the end of this block which we can move up
 - we want to move computation to output of all predecessors where expression is not already available (don’t insert at input)
 - we gain something by moving it up (PAVIN heuristic)
 - PPIN[i] = \(\begin{cases} 0 & i = \text{exit} \\ \cap \text{PAVIN}[i] \cup \text{PPIN}[p] \cup \text{OUT}[p] & i = \text{entry} \end{cases} \)
"Placement Possible" Example 1

\[t_1 = a + b \]

\[a = \ldots \]

\[KILL = 1 \]
\[AVLOC = 0 \]
\[PAVIN = 0 \]
\[PAVOUT = 0 \]
\[PPIN = \]

\[t_2 = a + b \]

"Placement Possible" Example 2

\[t_1 = a + b \]

\[a = \ldots \]

\[KILL = 1 \]
\[AVLOC = 1 \]
\[PAVIN = 1 \]
\[PAVOUT = 1 \]
\[PPIN = \]

\[t_2 = a + b \]

"Placement Possible" Correctness

- **Convergence** of analysis: transfer functions are monotone.
- **Safety**: Insert only if anticipated.

\[PPIN[i] \subseteq (PPOUT[i] \setminus KILL[i]) \cup ANTLOC[i] \]

\[PPOUT[i] = \begin{cases} 0 & i = \text{exit} \\ \cap_{s \in \text{succ}(i)} PPIN[s] & \text{otherwise} \end{cases} \]

- **INSERT** \(\subseteq PPOUT \subseteq ANOUT \), so insertion is safe.
- **Performance**: never increase the \# of computations on any path
 - **DELETE** = **PPIN** \(\cap \) **ANTLOC**
 - On every path from an **INSERT**, there is a **DELETE**.
 - The number of computations on a path does not increase.

Morel-Renvoise Limitations

- **Movement usefulness** tied to **PAVIN** heuristic
 - Makes some useless moves, might increase register lifetimes:

\[a + b \]

- Doesn't find some eliminations:

\[a + b \]

- **Bidirectional data flow** difficult to compute.
Related Work

- Don't need heuristic
 - Dhamdhere, Drechsler-Stadel, Knoop, et al.
 - use restricted flow graph or allow edge placements.

- Data flow can be separated into unidirectional passes
 - Dhamdhere, Knoop, et al.

- Improvement still tied to accuracy of computational model
 - Assumes performance depends only on the number of computations along any path.
 - Ignores resource constraint issues: register allocation, etc.
 - Knoop, et al. give "earliest" and "latest" placement algorithms which begin to address this.

- Further issues:
 - more than one expression at once, strength reduction, redundant assignments, redundant stores.