Lecture 10

Partial Redundancy Elimination

- Global code motion optimization
 - Remove partially redundant expressions
 - Loop invariant code motion
 - Can be extended to do Strength Reduction
- No loop analysis needed
- Bidirectional flow problem
References

Redundancy

- A **Common Subexpression** is a **Redundant Computation**

 \[t_1 = a + b \]

 \[t_2 = a + b \]

 \[t_3 = a + b \]

- **Occurrence of expression** \(E \) **at** \(P \) **is redundant** if \(E \) **is available** there:
 - \(E \) is evaluated along every path to \(P \), with no operands redefined since.

- Redundant expression can be eliminated
Partial Redundancy

- Partially Redundant Computation

\[t_1 = a + b \]

\[t_3 = a + b \]

- Occurrence of expression \(E \) at \(P \) is partially redundant if \(E \) is partially available there:
 - \(E \) is evaluated along at least one path to \(P \), with no operands redefined since.

- Partially redundant expression can be eliminated if we can insert computations to make it fully redundant.
Loop Invariants are Partial Redundancies

- Loop invariant expression is partially redundant

\[a = \ldots \]

\[t_1 = a + b \]

- As before, partially redundant computation can be eliminated if we insert computations to make it fully redundant.
- Remaining copies can be eliminated through copy propagation or more complex analysis of partially redundant assignments.
Partial Redundancy Elimination

• The Method:
 1. Insert Computations to make partially redundant expression(s) fully redundant.
 2. Eliminate redundant expression(s).

• Issues [Outline of Lecture]:
 1. What expression occurrences are candidates for elimination?
 2. Where can we safely insert computations?
 3. Where do we want to insert them?

• For this lecture, we assume one expression of interest, \(a+b \).
 – In practice, with some restrictions, can do many expressions in parallel.
Which Occurrences Might Be Eliminated?

• In **CSE**,
 – E is **available** at P if it is previously evaluated along **every** path to P, with no subsequent redefinitions of operands.
 – If so, we can eliminate computation at P.

• In **PRE**,
 – E is **partially available** at P if it is previously evaluated along **at least one** path to P, with no subsequent redefinitions of operands.
 – If so, we might be able to eliminate computation at P, if we can insert computations to make it fully redundant.

• **Occurrences of E where E is partially available** are candidates for elimination.
Finding Partially Available Expressions

• Forward flow problem
 – Lattice = \{ 0, 1 \}, meet is union (\(\cup \)), Top = 0 (not PAVAIL), entry = 0
 • PAVOUT\[i\] = (PAVIN\[i\] - KILL\[i\]) \(\cup \) AVLOC\[i\]
 • PAVIN\[i\] = \begin{cases} 0 & \text{if } i = \text{entry} \\ \bigcup_{p \in \text{preds}(i)} \text{PAVOUT}[p] & \text{otherwise} \end{cases}

• For a block,
 • Expression is locally available (AVLOC) if downwards exposed.
 • Expression is killed (KILL) if any assignments to operands.

\[
\begin{array}{c}
a = \ldots \\
\ldots = a + b \\
a = \ldots
\end{array}
\quad
\begin{array}{c}
\ldots = a + b \\
a = \ldots
\end{array}
\quad
\begin{array}{c}
\ldots = a + b \\
a = \ldots
\end{array}
\quad
\begin{array}{c}
\ldots = a + b \\
a = \ldots
\end{array}
\]
Partial Availability Example

- For expression $a+b$.

\[
\begin{align*}
 a &= \ldots \\
 t_1 &= a + b \\
 a &= \ldots \\
 t_2 &= a + b
\end{align*}
\]

- Occurrence in loop is partially redundant.
Where Can We Insert Computations?

- **Safety**: never introduce a new expression along any path.
 - Insertion could introduce exception, change program behavior.
 - If we can add a new basic block, can insert safely in most cases.
 - Solution: insert expression only where it is anticipated.

- **Performance**: never increase the # of computations on any path.
 - Under simple model, guarantees program won’t get worse.
 - Reality: might increase register lifetimes, add copies, lose.
Finding Anticipated Expressions

• **Backward flow problem**
 - Lattice = \{ 0, 1 \}, meet is intersect (\(\cap \)), top = 1 (ANT), exit = 0

 • \(\text{ANTIN}[i] = \text{ANTLOC}[i] \cup (\text{ANTOUT}[i] - \text{KILL}[i]) \)

 • \(\text{ANTOUT}[i] = \begin{cases} 0 & \text{if } i = \text{exit} \\ \cap \text{ANTIN}[s] & \text{otherwise} \end{cases} \quad s \in \text{succ}(i) \)

• For a block,
 - Expression **locally anticipated** (ANTLOC) if upwards exposed.
Anticipation Example

• For expression $a+b$.

$\begin{align*}
 a &= \ldots \\
 t_1 &= a + b \\
 a &= \ldots
\end{align*}$

$\begin{align*}
 \text{KILL} &= 1 & \text{ANTIN} &= \\
 \text{ANTLOC} &= 0 & \text{ANTOUT} &= \\
 \text{KILL} &= 0 & \text{ANTIN} &= \\
 \text{ANTLOC} &= 1 & \text{ANTOUT} &= \\
 \text{KILL} &= 1 & \text{ANTIN} &= \\
 \text{ANTLOC} &= 0 & \text{ANTOUT} &=
\end{align*}$

• Expression is anticipated at end of first block.
• Computation may be safely inserted there.
Where Do We Want to Insert Computations?

- **Morel-Renvoise and variants:** "Placement Possible"
 - Dataflow analysis shows where to insert:
 - PPIN = "Placement possible at entry of block or before."
 - PPOUT = "Placement possible at exit of block or before."
 - Insert at *earliest place where PP = 1.*
 - Only place at end of blocks,
 - PPIN really means "Placement possible or not necessary in each predecessor block."
 - Don't need to insert where expression is already available.
 - INSERT[i] = PPOUT[i] \(\cap (\neg PPIN[i] \cup KILL[i]) \cap \neg AVOUT[i]\)
 - Remove (upwards-exposed) computations where PPIN=1.
 - DELETE[i] = PPIN[i] \(\cap ANTLOC[i]\)
Where Do We Want to Insert? Example

\[
a = \ldots
\]

\[
t1 = a + b
\]

\[
a = \ldots
\]

\[
t2 = a + b
\]

PPIN =

PPOUT =

PPIN =

PPOUT =

PPIN =

PPOUT =

PPIN =

PPOUT =
Formulating the Problem

- **PPOUT**: we want to place at output of this block only if
 - we want to place at entry of all successors

- **PPIN**: we want to place at input of this block only if (all of):
 - we have a local computation to place, or a placement at the end of this block which we can move up
 - we want to move computation to output of all predecessors where expression is not already available (don’t insert at input)
 - we can gain something by placing it here (PAVIN)

- **Forward or Backward? BOTH!**

- **Problem is bidirectional**, but lattice \(\{0, 1\} \) is finite, so
 - as long as transfer functions are monotone, it converges.
Computing “Placement Possible”

- **PPOUT**: we want to place at output of this block only if
 - we want to place at entry of all successors

 $\{0\} \quad i = \text{exit}$

 $\bigcap_{s \in \text{succ}(i)} \text{PPIN}[s] \quad \text{otherwise}$

- **PPIN**: we want to place at start of this block only if (all of):
 - we have a local computation to place, or a placement at the end of this block which we can move up
 - we want to move computation to output of all predecessors where expression is not already available (don’t insert at input)
 - we gain something by moving it up (PAVIN heuristic)

 $\{0\} \quad i = \text{exit}$

 $\bigcap_{p \in \text{preds}(i)} \bigcap \text{P(PPOUT}[p] \text{ AVOUT}[p]) \quad \text{otherwise}$
"Placement Possible" Example 1

a = ...

KILL = 1 PAVIN = 0 PPIN =
AVLOC = 0 PAVOUT = 0
ANTLOC = 0 AVOUT = 0 PPOUT =

KILL = 0 PAVIN = 1 PPIN =
AVLOC = 1 PAVOUT = 1
ANTLOC = 1 AVOUT = 0 PPOUT =

KILL = 1 PAVIN = 1 PPIN =
AVLOC = 1 PAVOUT = 1
ANTLOC = 0 AVOUT = 1 PPOUT =
"Placement Possible" Example 2

\[a = \ldots \]
\[t_1 = a + b \]

\[t_2 = a + b \]

\[
\begin{align*}
\text{KILL} &= 1 & \text{PAVIN} &= 0 & \text{PPIN} &= \\
\text{AVLOC} &= 1 & \text{PAVOUT} &= 1 & \text{PPOUT} &= \\
\text{ANTLOC} &= 0 & \text{AVOUT} &= 1 & \text{PPOUT} &= \\
\end{align*}
\]

\[
\begin{align*}
\text{KILL} &= 1 & \text{PAVIN} &= 0 & \text{PPIN} &= \\
\text{AVLOC} &= 0 & \text{PAVOUT} &= 0 & \text{PPOUT} &= \\
\text{ANTLOC} &= 0 & \text{AVOUT} &= 0 & \text{PPOUT} &= \\
\end{align*}
\]

\[
\begin{align*}
\text{KILL} &= 0 & \text{PAVIN} &= 1 & \text{PPIN} &= \\
\text{AVLOC} &= 1 & \text{PAVOUT} &= 1 & \text{PPOUT} &= \\
\text{ANTLOC} &= 1 & \text{AVOUT} &= 1 & \text{PPOUT} &= \\
\end{align*}
\]
“Placement Possible” Correctness

- **Convergence** of analysis: transfer functions are monotone.
- **Safety**: Insert only if anticipated.

\[
\begin{align*}
PPIN[i] & \subseteq (PPOUT[i] - KILL[i]) \cup ANTLOC[i] \\
SPOUT[i] &= \begin{cases}
0 & i = \text{exit} \\
\cap_{s \in \text{succ}(i)} PPIN[s] & \text{otherwise}
\end{cases}
\end{align*}
\]

- **Performance**: never increase the # of computations on any path
 - **DELETE** = \(PPIN \cap ANTLOC \)
 - On every path from an INSERT, there is a DELETE.
 - The number of computations on a path does not increase.
Morel-Renvoise Limitations

- Movement usefulness tied to PAVIN heuristic
 - Makes some useless moves, might increase register lifetimes:

![Diagram](image1)

- Doesn’t find some eliminations:

![Diagram](image2)

- Bidirectional data flow difficult to compute.
Related Work

• Don't need heuristic
 – Dhamdhere, Drechsler-Stadel, Knoop, et.al.
 – use restricted flow graph or allow edge placements.

• Data flow can be separated into unidirectional passes
 – Dhamdhere, Knoop, et. al.

• Improvement still tied to accuracy of computational model
 – Assumes performance depends only on the number of computations along any path.
 – Ignores resource constraint issues: register allocation, etc.
 – Knoop, et.al. give “earliest” and “latest” placement algorithms which begin to address this.

• Further issues:
 – more than one expression at once, strength reduction, redundant assignments, redundant stores.