Lecture 8

Induction Variables and Strength Reduction

I Overview of optimization
II Algorithm to find induction variables

Reference: Muchnick 14.1

Example

FOR i = 0 to 100
 A[i] = 0;

 i = 0
 L2: IF i>=100 GOTO L1
 t1 = 4 * i
 t2 = &A + t1
 *t2 = 0
 i = i+1
 GOTO L2

L1:
Definitions

1. A basic induction variable is a variable X
 • whose only definitions within the loop are assignments of the form $X = X + c$ or $X = X - c$,
 where c is either a constant or a loop-invariant variable.

2. An induction variable is
 • a basic induction variable
 • a variable defined once within the loop,
 whose value is a linear function of some basic induction variable at the time of the definition.
 $$A = c_1 \times B + c_2$$

3. The FAMILY of a basic induction variable B
 • the set of induction variables A such that each time A is assigned in the loop, the value of A is a linear function of B.

Optimizations

1. Strength reduction:
 Let A be an induction variable in family of basic induction variable B
 $(A = c_1 \times B + c_2)$
 • Create new variable: A'
 • Initialization in preheader: $A' = c_1 \times B + c_2$
 • Track value of B: add after $B = B + \times$: $A' = A' + x \times c_1$
 • Replace assignment to A: $A = A'$
Optimizations (cont.)

2. Optimizing non-basic induction variables
 - copy propagation
 - dead code elimination

3. Optimizing basic induction variables
 Eliminate basic induction variables used only for
 - calculating other induction variables and loop tests
 Algorithm
 - Select an induction variable A in the family of B, preferably with simple constants ($A = c_1 \cdot B + c_2$).
 - Replace a comparison such as

 \[
 \text{if } B > X \text{ goto L1}
 \]

 by

 \[
 \text{if } (A' > c_1 \cdot X + c_2) \text{ goto L1, assuming } c_1 \text{ is positive}
 \]
 - if B is live at any exit from the loop, recompute it from A'
 - After the exit, $B = (A' - c_2) / c_1$

II. Basic Induction Variables

- A BASIC induction variable in a loop L
 - a variable X whose only definitions within L are assignments of the form $X = X + c$ or $X = X - c$, where c is either a constant or a loop-invariant variable.

 - Algorithm: can be detected by scanning L
 - Example:

    ```
    k = 0;
    for (i = 0; i < n; i++) {
      k = k + 3;
      ... = m
    if (x < y)
      k = k + 4;
    if (a < b)
      m = 2 * k
    k = k - 2
    ... = m
    ```

 Each iteration may execute a different number of increments/decrements!!
Strength Reduction Algorithm

- **Key idea**
 - For each induction variable A, $(A = c_1B + c_2$ at time of definition)
 - variable A' holds expression $c_1B + c_2$ at all times
 - replace definition of A with $A = A'$ only when executed

- **Result**
 - Program is correct
 - Definition of A does not need to refer to B

Finding Induction Variable Families

- **Let B be a basic induction variable**
 - Find all induction variables A in family of B:
 - $A = c_1 \cdot B + c_2$
 (where B refers to the value of B at time of definition)

- **Conditions**
 - If A has a single assignment in the loop L, and assignment is one of:

 \[
 \begin{align*}
 A &= B \cdot c \quad A &= c \cdot B \\
 A &= B / c \quad \text{(assuming A is real)} \\
 A &= B + c \quad A &= c + B \\
 A &= B - c \\
 A &= c - B
 \end{align*}
 \]

 - OR, ... (next page)
Finding Induction Variable Families (cont)

- Let D be an induction variable in the family of B
 \[D = c_1 * B + c_2 \]

- If A has a single assignment in the loop L, and assignment is one of:
 \[
 \begin{align*}
 A &= D * c & A &= c * D \\
 A &= D / c & (\text{assuming } A \text{ is real}) \\
 A &= D + c & A &= c + D \\
 A &= D - c \\
 A &= c - D
 \end{align*}
 \]

- No definition of D outside L reaches the assignment to A

- Between the lone point of assignment to D in L and the assignment to A, there are no definitions of B

Conclusions

- Precise definitions of induction variables
- Systematic identification of induction variables
- Strength reduction
- Clean up:
 - eliminating basic induction variables
 - used in other induction variable calculations
 - replacement of loop tests
 - eliminating other induction variables
 - standard optimizations