Lecture 5
Foundations of Data Flow Analysis

I. Meet operator
II. Transfer functions
III. Correctness, Precision, Convergence
IV. Efficiency

Reference: Muchnick 8.2-8.5
Background: Hecht and Ullman, Kildall, Allen and Cocke[76]
Marlowe&Ryder, Properties of data flow frameworks: a unified model
Rutgers tech report, Apr. 1988

A Unified Framework

- Data flow problems are defined by
 - Domain of values: V
 - Meet operator (V x V -> V), initial value
 - A set of transfer functions (V -> V)

- Usefulness of unified framework
 - To answer questions such as correctness, precision, convergence, speed of convergence for a family of problems
 - If meet operators and transfer functions have properties X, then we know Y about the above.
 - Reuse code

Partial Order

- Example: let V = {x | such that x ⊆ {d1, d2, d3}}, ∧ = ∩

- Top and Bottom elements
 - Top ⊤ such that x ∧ ⊤ = x
 - Bottom ⊥ such that x ∧ ⊥ = ⊥

- Values and meet operator in a data flow problem define a semi-lattice: there exists a ⊤, but not necessarily a ⊥.

- x, y are ordered: x ≤ y then x ∧ y = x
- what if x and y are not ordered?
 - x ∧ y ≤ x, x ∧ y ≤ y, and if w ≤ x, w ≤ y, then w ≤ x ∧ y
- ...
One vs. All Variables/Definitions

- Lattice for each variable: e.g. intersection

- Lattice for three variables:

Descending Chain

- Definition
 - The height of a lattice is the largest number of > relations that will fit in a descending chain.
 \[x_0 > x_1 > \ldots \]

- Height of values in reaching definitions?

- Important property: finite descending chain

- Can an infinite lattice have a finite descending chain?

- Example: Constant Propagation/Folding
 - To determine if a variable is a constant

- Data values
 - \text{undef, ... -1, 0, 1, 2, ...}, \text{not-a-constant}

II. Transfer Functions

- Basic Properties \(f : V \rightarrow V \)
 - Has an identity function
 - There exists an \(f \) such that \(f(x) = x \), for all \(x \).
 - Closed under composition
 - If \(f_1, f_2 \in F \), \(f_1 \circ f_2 \in F \)

Monotonicity

- A framework \((F, V, \land)\) is monotone if and only if
 - \(x \leq y \) implies \(f(x) \leq f(y) \),
 i.e., a “smaller or equal” input to the same function will always give a “smaller or equal” output

- Equivalently, a framework \((F, V, \land)\) is monotone if and only if
 - \(f(x \land y) \leq f(x) \land f(y) \),
 i.e. merge input, then apply \(f \) is \textbf{smaller than or equal to}
 apply the transfer function individually then merge result
Example

- Reaching definitions: \(f(x) = \text{Gen} \cup (x - \text{Kill}) \)
 - Definition 1:
 - \(x_1 \leq x_2, \text{Gen} \cup (x_1 - \text{Kill}) \leq \text{Gen} \cup (x_2 - \text{Kill}) \)
 - Definition 2:
 - \((\text{Gen} \cup (x_1 - \text{Kill})) \cup (\text{Gen} \cup (x_2 - \text{Kill})) = (\text{Gen} \cup ((x_1 \cup x_2) - \text{Kill}))\)

- Note: Monotone framework does not mean that \(f(x) \leq x \)
 - e.g. Reaching definition for two definitions in program
 - suppose: \(f_x: \text{Gen}_x = \{d_1, d_2\}; \text{Kill}_x = \{} \)

- If input(second iteration) \(\leq \) input(first iteration)
 - result(second iteration) \(\leq \) result(first iteration)

Distributivity

- A framework \((F, V, \land)\) is distributive if and only if
 - \(f(x \land y) = f(x) \land f(y) \)
 - i.e. merge input, then apply \(f \) is equal to apply the transfer function individually then merge result

- Example: Constant Propagation

\[
\begin{array}{c}
a = 2 \\
b = 3 \\
c = a + b \\
a = 3 \\
b = 2 \\
\end{array}
\]

III. Data Flow Analysis

- Definition
 - Let \(f_1, ..., f_m : F \rightarrow F \), \(f_i \) is the transfer function for node \(i \)
 - \(f_p = f_{n_k} \ldots f_{n_1} \cdot p \) is a path through nodes \(n_k, ..., n_1 \)
 - \(f_p \) = identify function, if \(p \) is an empty path

- Ideal data flow answer:
 - For each node \(n \):
 - \(\land f_{p_i} (\lor) \), for all possibly executed paths \(p_i \) reaching \(n \).

- Determining all possibly executed paths is undecidable

Meet-Over-Paths MOP

- Err in the conservative direction
- Meet-Over-Paths MOP
 - For each node \(n \):
 - \(\text{MOP} (n) = \land f_{p_i} (\lor) \), for all paths \(p_i \) reaching \(n \)
 - a path exists as long there is an edge in the code
 - consider more paths than necessary
 - \(\text{MOP} = \text{Perfect-Solution} \land \text{Solution-to-Unexecuted-Paths} \)
 - POTentially more constrained, solution is small
 - => conservative
 - It is not safe to be \(> \) Perfect-Solution!
- Desirable solution: as close to MOP as possible
Solving Data Flow Equations

- **Example: Reaching definition**
 - out(entry) = {}
 - Values = {subsets of definitions}
 - Meet operator: \(\cup \)
 \[\text{in}(b) = \cup \text{out}(p), \text{for all predecessors } p \text{ of } b \]
 - Transfer functions:
 \[\text{out}(b) = \text{gen}_b \cup (\text{in}(b) - \text{kill}_b) \]

- **Any solution satisfying equations = Fixed Point Solution (FP)**

- **Iterative algorithm**
 - initializes out(b) to {}
 If converges, it computes Maximum Fixed Point (MFP):
 MFP is the largest of all solutions to equations

- **Properties:**
 - FP \(\leq \) MFP \(\leq \) MOP \(\leq \) Perfect-solution
 - FP, MFP are safe
 - in(b) \(\leq \) MOP(b)

Partial Correctness of Algorithm

- **If data flow framework is monotone**
 then if the algorithm converges, \(\text{IN}[b] \leq \text{MOP}[b] \)

- **Proof: Induction on path lengths**
 - Define \(\text{IN}[\text{entry}] = \text{OUT}[\text{entry}] \)
 and transfer function of entry = Identity function
 - Base case: path of length 0
 - Proper initialization of \(\text{IN}[\text{entry}] \)
 - If true for path of length \(k \), \(p_k = (n_1, ..., n_k) \),
 true for path of length \(k+1 \): \(p_{k+1} = (n_1, ..., n_{k+1}) \)
 - Assume: \(\text{IN}[n_k] \leq f_{n_{k-1}}(f_{n_{k-2}}(...f_{n_1}(\text{IN}[\text{entry}]))) \)
 - \(\text{IN}[n_{k+1}] = \text{OUT}[n_k] \wedge ... \)
 \[\leq \text{OUT}[n_k] \]
 \[\leq f_{n_k}(\text{IN}[n_k]) \]
 \[\leq f_{n_k}(f_{n_{k-1}}(... f_{n_1}(\text{IN}[\text{entry}]))) \]

Precision

- **If data flow framework is distributive**
 then if the algorithm converges, \(\text{IN}[b] = \text{MOP}[b] \)

- Monotone but not distributive: behaves as if there are additional paths

 \[
 \begin{align*}
 a &= 2 \\
 b &= 3 \\
 c &= a + b
 \end{align*}
 \[
 \begin{align*}
 a &= 3 \\
 b &= 2 \\
 c &= a + b
 \end{align*}
 \]

Additional Property to Guarantee Convergence

- **Data flow framework (monotone) converges**
 if there is a finite descending chain

 - For each variable \(\text{IN}[b], \text{OUT}[b] \),
 consider the sequence of values set to each variable across iterations
 - if sequence for \(\text{in}[b] \) is monotonically decreasing
 - sequence for \(\text{out}[b] \) is monotonically decreasing
 \(\text{out}[b] \) initialized to
 - if sequence for \(\text{out}[b] \) is monotonically decreasing
 - sequence of \(\text{in}[b] \) is monotonically decreasing
IV. Speed of Convergence

- Speed of convergence depends on order of node visits

- Reverse “direction” for backward flow problems

Reverse Postorder

- Step 1: depth-first post order

  ```
  main ()
  count = 1;
  Visit (root);
  
  Visit (n)
  for each successor s that has not been visited
  Visit (s);
  PostOrder(n) = count;
  count = count+1;
  ```

- Step 2: reverse order

  ```
  For each node i
  rPostOrder = NumNodes - PostOrder(i)
  ```

Depth-First Iterative Algorithm (forward)

```c
/* Initialize */
out(Entry) = init_value
For all nodes i
  out(i) = T
change = True

/* iterate */
While Change {
  Change = False
  For each node i in rPostOrder {
    in[i] = \( \wedge \) (out[p]), for all predecessors p of i
    oldout = out[i]
    out[i] = f_i(in[i])
    if oldout \neq out[i]
      Change =True
  }
}
```

Speed of Convergence

- If cycles do not add information
 - information can flow in one pass down a series of nodes of increasing order number
 1 -> 4 -> 5 -> 7 -> 2 -> 4 ...
 - passes determined by number of back edges in the path
 - essentially the nesting depth of the graph
 - Number of iterations = number of back edges in any acyclic path + 2
 (two is necessary even if there are no cycles)

- What is the depth?
 - corresponds to depth of intervals for “reducible” graphs
 - In real programs: average of 2.75
A Check List on Data Flow Problems

- Semi-lattice
 - set of values
 - meet operator
 - top, bottom
 - finite descending chain?

- Transfer functions
 - function of each basic block
 - monotone
 - distributive?

- Algorithm
 - initialization step (entry/exit, other nodes)
 - visit order: rPostOrder
 - depth of the graph