A Simple Problem (Linear Regression)

- We have training data \(X = \{x_i^k\}, i = 1, \ldots, N \) with corresponding output \(Y = \{y_i^k\}, i = 1, \ldots, N \)
- We want to find the parameters that predict the output \(Y \) from the data \(X \) in a linear fashion:

\[
Y \approx w_0 + w_1 x_1
\]
A Simple Problem (Linear Regression)

- We have training data \(X = \{ x_i^k \} \), \(k = 1, \ldots, N \) with corresponding output \(Y = \{ y^k \} \), \(k = 1, \ldots, N \).

- We want to find the parameters that predict the output \(Y \) from the data \(X \) in a linear fashion:
 \[
 y^k \approx w_0 + w_1 x_1^k
 \]

Notations:
Superscript: Index of the data point in the training data set; \(k = k^{th} \) training data point
Subscript: Coordinate of the data point; \(x_1^k \) = coordinate 1 of data point \(k \).

A Simple Problem (Linear Regression)

- It is convenient to define an additional “fake” attribute for the input data: \(x_0 = 1 \)
- We want to find the parameters that predict the output \(Y \) from the data \(X \) in a linear fashion:
 \[
 y^k \approx w_0 x_0^k + w_1 x_1^k
 \]
More convenient notations

• Vector of attributes for each training data point:
 \[x^k = [x_{o}^k, \ldots, x_{M}^k] \]

• We seek a vector of parameters: \(w = [w_0, \ldots, w_M] \)

• Such that we have a linear relation between prediction \(Y \) and attributes \(X \):
 \[y^k \approx W_{o}x_{o}^k + W_{1}x_{1}^k + \cdots + W_{M}x_{M}^k = \sum_{i=0}^{M} w_i x_i^k = w \cdot x^k \]

By definition: The dot product between vectors \(w \) and \(x^k \) is:
\[w \cdot x^k = \sum_{i=0}^{M} w_i x_i^k \]
Neural Network: Linear Perceptron

\[x_0 \] \[\ldots \] \[x_i \] \[\ldots \] \[x_M \]

Output prediction

\[\sum_{i=0}^{M} w_i x_i = w \cdot x \]

Input attribute values

Output prediction

Input Units

Connection with weight

Note: This input unit corresponds to the “fake” attribute \(x_0 = 1 \). Called the bias

Neural Network Learning problem: Adjust the connection weights so that the network generates the correct prediction on the training data.
Linear Regression: Gradient Descent

- We seek a vector of parameters: \(w = [w_0, \ldots, w_M] \) that minimizes the error between the prediction \(Y \) and the data \(X \):

\[
E = \sum_{k=1}^{N} \left(y^k - (w_0 x_0^k + w_1 x_1^k + \cdots + w_M x_M^k) \right)^2
\]

\[
= \sum_{k=1}^{N} (y^k - w \cdot x^k)^2
\]

\[
= \sum_{k=1}^{N} \delta_k^2 \quad \delta_k = y^k - w \cdot x^k
\]

\(\delta_k \) is the error between the input \(x \) and the prediction \(y \) at data point \(k \). Graphically, it is the “vertical” distance between data point \(k \) and the prediction calculated by using the vector of linear parameters \(w \).
Gradient Descent

• The minimum of E is reached when the derivatives with respect to each of the parameters w_i is zero:

$$\frac{\partial E}{\partial w_i} = -2 \sum_{k=1}^{N} \left(y^k - (w_o x^k_o + w_1 x^k_1 + \cdots + w_M x^k_M) \right) x^k_i$$

$$= -2 \sum_{k=1}^{N} (y^k - w \cdot x^k) x^k_i$$

$$= -2 \sum_{k=1}^{N} \delta_k x^k_i$$

Note that the contribution of training data element number k to the overall gradient is $-\delta_k x^k_i$.
Gradient Descent Update Rule

- Update rule: Move in the direction opposite to the gradient direction

\[w_i \leftarrow w_i - \alpha \frac{\partial E}{\partial w_i} \]

- Here we need to increase \(w_i \). Note that \(\frac{\partial E}{\partial w_i} \) is negative.
- Here we need to decrease \(w_i \). Note that \(\frac{\partial E}{\partial w_i} \) is positive.

Perceptron Training

- Given input training data \(x^k \) with corresponding value \(y^k \)
 1. Compute error:

\[\delta_k \leftarrow y^k - w \cdot x^k \]

2. Update NN weights:

\[w_i \leftarrow w_i + \alpha \delta_k x_i^k \]
α is the learning rate.

α too small: May converge slowly and may need a lot of training examples

α too large: May change \mathbf{w} too quickly and spend a long time oscillating around the minimum.

1. Compute error:

$$\delta_k \leftarrow y^k - \mathbf{x}_i^k$$

2. Update NN weights:

$$\mathbf{w}_i \leftarrow \mathbf{w}_i + \alpha \delta_k \mathbf{x}_i^k$$

α too small: May converge slowly and may need a lot of training examples

α too large: May change \mathbf{w} too quickly and spend a long time oscillating around the minimum.
After 2 iterations (2 training points)

After 6 iterations (6 training points)
Perceptrons: Remarks

- Update has many names: delta rule, gradient rule, LMS rule.....
- Update is guaranteed to converge to the best linear fit (global minimum of E)
- Of course, there are more direct ways of solving the linear regression problem by using linear algebra techniques. It boils down to a simple matrix inversion (not shown here).
- In fact, the perceptron training algorithm can be much, much slower than the direct solution
- So why do we bother with this? The answer in the next few of slides...be patient
A Simple Classification Problem

Training data:

- Suppose that we have one attribute x_1
- Suppose that the data is in two classes (red dots and green dots)
- Given an input value x_1, we wish to predict the most likely class (note: Same problem as the one we solved with decision trees and nearest-neighbors).

A Simple Classification Problem

- We could convert it to a problem similar to the previous one by defining an output value y
 $$y = \begin{cases}
0 & \text{if in red class} \\
1 & \text{if in green class}
\end{cases}$$
- The problem now is to learn a mapping between the attribute x_1 of the training examples and their corresponding class output y
A Simple Classification Problem

What we would like: a piece-wise constant prediction function:
This is not continuous → Does not have derivatives

What we get from the current linear perceptron model:
continuous linear prediction

Possible solution: Transform the linear predictions by some function σ which would transform to a continuous approximation of a threshold

This curve is a continuous approximation ("soft" threshold) of the hard threshold θ
Note that we can take derivatives of that prediction function
The Sigmoid Function

\[\sigma(t) = \frac{1}{1 + e^{-t}} \]

• Note: It is not important to remember the exact expression of \(\sigma \) (in fact, alternate definitions are used for \(\sigma \)). What is important to remember is that:
 – It is smooth and has a derivative \(\sigma' \) (exact expression is unimportant)
 – It approximates a hard threshold function at \(x = 0 \)

Generalization to \(M \) Attributes

A linear separation is parameterized like a line:

\[\sum_{i=0}^{M} w_i x_i = w \cdot x = 0 \]

• Two classes are linearly separable if they can be separated by a linear combination of the attributes:
 – Threshold in 1-d
 – Line in 2-d
 – Plane in 3-d
 – Hyperplane in \(M \)-d
Generalization to M Attributes

A linear separation is parameterized like a line:

$$\sum_{i=0}^{M} w_i x_i = w \cdot x = 0$$

$y = 0$ in this region, we can approximate y by $\sigma(w \cdot x) \approx 0$

$y = 1$ in this region, we can approximate y by $\sigma(w \cdot x) \approx 1$

Single Layer Network for Classification

- Term: Single-layer Perceptron

Output prediction

$$\sigma\left(\sum_{i=0}^{M} w_i x_i\right) = \sigma(w \cdot x)$$
Interpreting the Squashing Function

- Roughly speaking, we can interpret the output as how confident we are in the classification: \(\text{Prob}(y=1|x) \)

Training

- Given input training data \(x^k \) with corresponding value \(y^k \)
 1. Compute error:
 \[
 \delta_k \leftarrow y^k - \sigma(w \cdot x^k)
 \]
 2. Update NN weights:
 \[
 w_i \leftarrow w_i + \alpha \delta_k x_i^k \sigma'(w \cdot x^k)
 \]
• Given input training data \(x^k \) with corresponding value \(y^k \):

1. Compute error:

\[
\delta_k \leftarrow y^k - \sigma(w \cdot x^k)
\]

2. Update NN weights:

\[
w_i \leftarrow w_i + \alpha \delta_k x_i^k \sigma'(w \cdot x^k)
\]

Note: It is exactly the same as before, except for the additional complication of passing the linear output through \(\sigma \).

This formula derived by direct application of the chain rule from calculus.

Example

\(x_2 = x_1 \)

\(w = [0 \ 1 \ -1] \)

Annoying detail: We get the same separating line if we multiplying all of \(w \) by some constant, so we are really interested in the relative values, such as the slope of the line, \(-w_2/w_1\).
17 iterations (17 training data points)

True class boundary

5 iterations (5 training data points)

True value of slope $-\frac{w_1}{w_2} = 1$

Iterations

40 iterations (40 training data points)

True value of slope $-\frac{w_1}{w_2} = 1$

Iterations

60 iterations (60 training data points)

True value of slope $-\frac{w_1}{w_2} = 1$
Single Layer: Remarks

- Good news: Can represent any problem in which the decision boundary is linear.
- Bad news: NO guarantee if the problem is not linearly separable.
- Canonical example: Learning the XOR function from example → There is no line separating the data in 2 classes.

\[
\begin{align*}
&x_1 = 0 \\
&x_2 = 1 \\
&x_1 = 0 \\
&x_2 = 0
\end{align*}
\]

Class output:
\[y = x_1 \text{ XOR } x_2\]

Why we need more complex models than just “linear” (and why we need to suffer through a lot more slides)

Learns to avoid obstacles using cameras
Input: All the pixels from the images from 2 cameras are input units
Output: Steering direction
Network: Many layers (3.15 million connections, and 71,900 parameters!!)
Training: Trained on 95,000 frames from human driving (30,000 for testing)
Execution: Real-time execution on input data (10 frames/sec. approx.)

New: Layer of hidden units. There can be an arbitrary number of hidden units and an arbitrary number of layers. More complex networks can be used to describe more complex classification boundaries.
Training: Backpropagation

- The analytical expression of the network's output becomes totally unwieldy (something like:
 \[
 \text{output} = \sigma \left(\sum_{m=1}^{L} w'_m \sigma \left(\sum_{j=0}^{M} w_{jm} x_j \right) \right)
 \]

- Things get worse as we can use an arbitrary number of layers with an arbitrary number of hidden units.
- The point is that we can still take the derivatives of this monster expression with respect to all of the weights and adjust them to do gradient descent based on the training data.
- Fortunately, there is a mechanical way of propagating the errors (the δ’s) through the network so that the weights are correctly updated. So we never have to deal directly with these ugly expressions.
- This is called backpropagation. Backpropagation implements the gradient descent shown earlier in the general case of multiple layers.

(Contrived) Example

Classes cannot be separated by a linear boundary
Let's try: 2-layer network, 4 hidden units
Multi-Layer Networks: Key Results

- **Good**: Multi-layer networks can represent *any* arbitrary decision boundary. We are no longer limited to linear boundaries.
- **Bad**: Unfortunately, there is *no* guarantee at all regarding convergence of training procedure.
- More complex networks (more hidden units and/or more layers) can represent more complex boundaries, but beware of overfitting. A complex enough network can always fit the training data!
- In practice: Training works well for reasonable designs of the networks for specific problems.
Overfitting Issues

- NNs have the same overfitting problem as any of the other techniques
- This is addressed essentially in the same way:
 - Train on training data set
 - At each step, evaluate performance on an independent validation test set
 - Stop when the error on the test data is minimum

Real Example

\[f(x) = \text{orientation of template sampled at } 10^\circ \text{ intervals} \]

\[f(x) = \text{face detection posterior distribution} \]
Real Example

- Takes as input image of handwritten digit
- Each pixel is an input unit
- Complex network with many layers
- Output is digit class

- Tested on large (50,000+) database of handwritten samples
- Real-time
- Used commercially

Very low error rate (<< 1%)
Real Example

network with 1 layer
(4 hidden units)

- Learns to drive on roads
- Demonstrated at highway speeds over 100s of miles

Training data:
Images + corresponding steering angle

Important:
Conditioning of training data to generate new examples \rightarrow avoids overfitting
Real Example

Learns to avoid obstacles using cameras
Input: All the pixels from the images from 2 cameras are input units
Output: Steering direction
Network: Many layers (3.15 million connections, and 71,900 parameters!!)
Training: Trained on 95,000 frames from human driving (30,000 for testing)
Execution: Real-time execution on input data (10 frames/sec. approx.)

Summary

• Neural networks used for
 – Approximating \(y \) as function of input \(x \) (regression)
 – Predicting (discrete) class \(y \) as function of input \(x \) (classification)

• Key Concepts:
 – Difference between linear and sigmoid outputs
 – Gradient descent for training
 – Backpropagation for general networks
 – Use of validation data for avoiding overfitting

• Good:
 – “simple” framework
 – Direct procedure for training (gradient descent…)
 – Convergence guarantees in the linear case

• Not so good:
 – Many parameters (learning rate, etc.)
 – Need to design the architecture of the network (how many units? How many layers? What transfer function at each unit? Etc.)
 – Requires a substantial amount of engineering in designing the network
 – Training can be very slow and can get stuck in local minima