Markov Decision Processes: Making Decision in the Presence of Uncertainty

(some of) R&N 16.1-16.6
R&N 17.1-17.4

Decision Processes: General Description

- Suppose that you own a business. At any time, you know exactly the current state of the business (finances, stock, etc.).
- At any time, you have a choice of several possible actions (advertise, introduce new products,…).
- You cannot predict with certainty the consequence of these actions given the current state of the business, but you have a guess as to the likelihood of the possible outcomes.
- How can you define a policy that will guarantee that you always choose the action that maximizes expected future profits?

Note: Russel & Norvig, Chapter 17.
Decision Processes: General Description

• Decide what action to take next, given:
 – A probability to move to different states
 – A way to evaluate the reward of being in different states

 Robot path planning
 Travel route planning
 Elevator scheduling
 Aircraft navigation
 Manufacturing processes
 Network switching & routing

Example

• Assume that time is discretized into discrete time steps $t = 1, 2, \ldots$ (for example, fiscal years)
• Suppose that the business can be in one of a finite number of states s (this is a major simplification, but let’s assume….)
• Suppose that for every state s, we can anticipate a reward that the business receives for being in that state: $R(s)$ (in this example, $R(s)$ would the profit, possibly negative, generated by the business)
• Assume also that $R(s)$ is bounded ($R(s) < M$ for all s), meaning that the business cannot generate more than a certain profit threshold
• Question: What is the total value of the reward for a particular configuration of states $\{s_1, s_2, \ldots\}$ over time?
Example

• Question: What is the total value of the reward for a particular configuration of states \{s_1, s_2, \ldots\} over time?
• It is simply the sum of the rewards (possibly negative) that we will receive in the future:

\[U(s_1, s_2, \ldots, s_n, \ldots) = R(s_1) + R(s_2) + \ldots + R(s_n) + \ldots \]

What is wrong with this formula???

Horizon Problem

\[U(s_0, \ldots, s_N) = R(s_0) + R(s_1) + \ldots + R(s_N) \]

The sum may be arbitrarily large depending on \(N \)

Need to know \(N \), the length of the sequence (finite horizon)
Horizon Problem

• The problem is that we did not put any limit on the “future”, so this sum can be infinite.
• For example: Consider the simple case of computing the total future reward if the business remains forever in the same state:

\[U(s, s, \ldots, s, \ldots) = R(s) + R(s) + \ldots + R(s) + \ldots \]

is clearly infinite in general!!
• This definition is useless unless we consider a finite time horizon.
• But, in general, we don’t have a good way to define such a time horizon.

Discounting

\[U(s_0, \ldots) = R(s_0) + \gamma R(s_1) + \ldots + \gamma^N R(s_N) + \ldots \]

The length of the sequence is arbitrary (infinite horizon)

Discount factor \(0 < \gamma < 1\)
Discounting

- $U(s_0, \ldots) = R(s_0) + \gamma R(s_1) + \ldots + \gamma^N R(s_N) + \ldots$
- Always converges if $\gamma < 1$ and $R(.)$ is bounded
- γ close to 0 → instant gratification, don’t pay attention to future reward
- γ close to 1 → extremely conservative, consider profits/losses no matter how far in the future
- The resulting model is the discounted reward
- Prefers expedient solutions (models impatience)
- Compensates for uncertainty in available time (models mortality)
- Economic example:
 - Being promised $10,000 next year is worth only 90% as much as receiving $10,000 right now.
 - Assuming payment n years in future is worth only $(0.9)^n$ of payment now

Actions

- Assume that we also have a finite set of actions a
- An action a causes a transition from a state s to a state s'
- In the “business” example, an action may be placing advertising, or selling stock, etc.
The Basic Decision Problem

• Given:
 – Set of states $S = \{s\}$
 – Set of actions $A = \{a\}$
 – Reward function $R(.)$
 – Discount factor γ
 – Starting state s_1

• Find a sequence of actions such that the resulting sequence of states maximizes the total discounted reward:

$$U(s_0, \ldots) = R(s_0) + \gamma R(s_1) + \ldots + \gamma^N R(s_N) + \ldots.$$

Maze Example: Utility

- Define the reward of being in a state:
 - $R(s) = -0.04$ if s is empty state
 - $R(4,3) = +1$ (maximum reward when goal is reached)
 - $R(4,2) = -1$ (avoid $(4,2)$ as much as possible)

- Define the utility of a sequence of states:
 - $U(s_0, \ldots, s_N) = R(s_0) + R(s_1) + \ldots + R(s_N)$
Maze Example: Utility

- Define the reward of being in a state:
 - $R(s) = -0.04$ if s is empty state
 - $R(4,3) = +1$ (maximum reward when goal is reached)
 - $R(4,2) = -1$ (avoid (4,2) as much as possible)
- Define the utility of a sequence of states:
 - $U(s_0, ..., s_N) = R(s_0) + R(s_1) + ... + R(s_N)$

If no uncertainty:
Find the sequence of actions that maximizes the sum of the rewards of the traversed states.

Maze Example: No Uncertainty

- States: locations in maze grid
- Actions: Moves up/left left/right
- If no uncertainty: Find sequence of actions from current state to goal (+1) that maximizes utility
 \[\text{We know how to do this using earlier search techniques} \]
What we are looking for: Policy

- **Policy** = Mapping from states to action \(\pi(s) = a \)
 - Which action should I take in each state
- In the maze example, \(\pi(s) \) associates a motion to a particular location on the grid
- For any state \(s \), we define the utility \(U(s) \) of \(s \) as the sum of discounted rewards of the sequence of states starting at state \(s \) generated by using the policy \(\pi \)
 \[
 U(s) = R(s) + \gamma R(s_1) + \gamma^2 R(s_2) + \ldots.
 \]
- Where we move from \(s \) to \(s_1 \) by action \(\pi(s) \)
- We move from \(s_1 \) to \(s_2 \) by action \(\pi(s_1) \)
- …etc.

Optimal Decision Policy

- **Policy** = Mapping from states to action \(\pi(s) = a \)
 - Which action should I take in each state
- Intuition: \(\pi \) encodes the best action that we can take from any state to maximize future rewards
- In the maze example, \(\pi(s) \) associates a motion to a particular location on the grid
- **Optimal Policy** = The policy \(\pi^* \) that maximizes the expected utility \(U(s) \) of the sequence of states generated by \(\pi^* \), starting at \(s \)
- In the maze example, \(\pi^*(s) \) tells us which motion to choose at every cell of the grid to bring us closer to the goal
Maze Example: No Uncertainty

- $\pi^*((1,1)) = \text{UP}$
- $\pi^*((1,3)) = \text{RIGHT}$
- $\pi^*((4,1)) = \text{LEFT}$

Maze Example: With Uncertainty

- The robot may not execute exactly the action that is commanded → The outcome of an action is no longer deterministic
- Uncertainty:
 - We know in which state we are (fully observable)
 - But we are not sure that the commanded action will be executed exactly
Uncertainty

• No uncertainty:
 – An action \(a\) deterministically causes a transition from a state \(s\) to another state \(s'\)

• With uncertainty:
 – An action \(a\) causes a transition from a state \(s\) to another state \(s'\) with some probability \(T(s,a,s')\)
 – \(T(s,a,s')\) is called the transition probability from state \(s\) to state \(s'\) through action \(a\)
 – In general, we need \(|S|^2 \times |A|\) numbers to store all the transitions probabilities

Maze Example: With Uncertainty

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>+1</td>
</tr>
<tr>
<td>2</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>-1</td>
</tr>
<tr>
<td>1</td>
<td>↑</td>
<td></td>
<td>↑</td>
<td>←</td>
</tr>
</tbody>
</table>

• We can no longer find a unique sequence of actions, but
• Can we find a policy that tells us how to decide which action to take from each state except that now the policy maximizes the expected utility
Maze Example: Utility Revisited

U(s) = Expected reward of future states starting at s

How to compute U after one step?

Suppose s = (1,1) and we choose action Up.

U(1,1) = R(1,1) +
Suppose \(s = (1,1) \) and we choose action \(\text{Up} \).

\[
U(1,1) = R(1,1) + 0.8 \times U(1,2) + \]

\[
0.8 \]

Intended action \(a: \)

\[
T(s,a,s')
\]

0.1

0.1

\[
0.1
\]

\[
0.1
\]

Maze Example: Utility Revisited
Suppose $s = (1,1)$ and we choose action Up.

\[U(1,1) = R(1,1) + 0.8 \times U(1,2) + 0.1 \times U(2,1) + 0.1 \times R(1,1) \]
Same with Discount

Suppose $s = (1,1)$ and we choose action Up.

$$U(1,1) = R(1,1) + \gamma (0.8 \times U(1,2) + 0.1 \times U(2,1) + 0.1 \times R(1,1))$$

More General Expression

• If we choose action a at state s, expected future rewards are:

$$U(s) = R(s) + \gamma \sum_{s'} T(s,a,s') U(s')$$
More General Expression

• If we choose action a at state s:

$$U(s) = R(s) + \gamma \sum_{s'} T(s,a,s') U(s')$$

- $U(s)$: Expected sum of future discounted rewards starting at s.
- $R(s)$: Reward at current state s.
- γ: Discount factor.
- $T(s,a,s')$: Probability of moving from state s to state s' with action a.

More General Expression

• If we are using policy π, we choose action $a=\pi(s)$ at state s, expected future rewards are:

$$U_\pi(s) = R(s) + \gamma \sum_{s'} T(s,\pi(s),s') U_\pi(s')$$

- $U_\pi(s)$: Expected sum of future discounted rewards starting at s for policy π.
Formal Definitions

- Finite set of states: S
- Finite set of allowed actions: A
- Reward function $R(s)$
- Transitions probabilities: $T(s,a,s') = P(s'|a,s)$
- Utility = sum of discounted rewards:
 \[U(s_0, \ldots) = R(s_0) + \gamma R(s_1) + \ldots + \gamma^N R(s_N) + \ldots \]
- Policy: $\pi : S \rightarrow A$
- Optimal policy: $\pi^*(s) = \text{action that maximizes the } expected \text{ sum of rewards from state } s$

Markov Decision Process (MDP)

- Key property (Markov):
 \[P(s_{t+1} | a, s_0, \ldots, s_t) = P(s_{t+1} | a, s_t) \]
- In words: The new state reached after applying an action depends only on the previous state and it does not depend on the previous history of the states visited in the past

 \Rightarrow Markov Process
• When applying the action “Right” from state $s_2 = (1,3)$, the new state depends only on the previous state s_2, not the entire history $\{s_1, s_0\}$

Graphical Notations

$T(s, a_1, s') = 0.8$
$T(s', a_2, s) = 0.6$
$T(s, a_2, s) = 0.2$

- Nodes are states
- Each arc corresponds to a possible transition between two states given an action
- Arrows are labeled by the transition probabilities

$T(s, a_1, s') = 0.8$
$T(s', a_2, s) = 0.6$
Example (Partial)

Example

- I run a company
- I can choose to either save money or spend money on advertising
- If I advertise, I may become famous (50% prob.) but will spend money so I may become poor
- If I save money, I may become rich (50% prob.), but I may also become unknown because I don’t advertise
- What should I do?
Example Policies

<table>
<thead>
<tr>
<th>Policy Number 1</th>
<th>STATE → ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>PU</td>
<td>S</td>
</tr>
<tr>
<td>PF</td>
<td>A</td>
</tr>
<tr>
<td>RU</td>
<td>S</td>
</tr>
<tr>
<td>RF</td>
<td>A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Policy Number 2</th>
<th>STATE → ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>PU</td>
<td>A</td>
</tr>
<tr>
<td>PF</td>
<td>A</td>
</tr>
<tr>
<td>RU</td>
<td>A</td>
</tr>
<tr>
<td>RF</td>
<td>A</td>
</tr>
</tbody>
</table>

- How many policies?
- Which one is the best policy?
- How to compute the optimal policy?
Example: Finance and Business

- **States**: Status of the company (cash reserves, inventory, etc.)
- **Actions**: Business decisions (advertise, acquire other companies, roll out product, etc.)
- **Uncertainty**: Due to all the external uncontrollable factors (economy, shortages, consumer confidence...)
- **Optimal policy**: The policy for making business decisions that maximizes the expected future profits

Note: Ok, this is an overly simplified view of business models. Similar models could be used for investment decisions, etc.

Example: Robotics

- **States**: 2-D positions
- **Actions**: Commanded motions (turn by x degrees, move y meters)
- **Uncertainty**: Comes from the fact that the mechanism is not perfect (slippage, etc.) and does not execute the commands exactly
- **Reward**: When avoiding forbidden regions (for example)
- **Optimal policy**: The policy that minimizes the cost to the goal
Example: Games

• States: Number of white and black checkers at each location
• Note: Number of states is huge, on the order 10^{20} states!!!!
• Branching factor prevents direct search
• Actions: Set of legal moves from any state
• Uncertainty comes from the roll of the dice
• Reward computed from number of checkers in the goal quadrant
• Optimal policy: The one that maximizes the probability of winning the game

Interesting example because it is impossible to store explicitly the transition probability tables (or the states, or the values $U(s)$).

Example: Robotics

• Learning how to fly helicopters!
• States: Possible values for the roll, pitch, yaw, elevation of the helicopter
• Actions: Commands to the actuators. The uncertainty comes from the fact that the actuators are imperfect and that there are unknown external effects like wind gusts
• Reward: High reward if it remains in stable flight (low reward if it goes unstable and crashes!)
• Policy: A control law that associates a command to the observed state
• Optimal policy: The policy that maximizes flight stability for a particular maneuver (e.g., hovering)

Note 1: The states are continuous in this case. Although we will cover only MDPs with discrete states, the concepts can be extended to continuous spaces.
Note 2: It is obviously impossible to "try" different policies on the system itself, for obvious reasons (it will crash to the ground on most policies!!).
Key Result

• For every MDP, there exists an optimal policy
• There is no better option (in terms of expected sum of rewards) than to follow this policy

• How to compute the optimal policy?
 → We cannot evaluate all possible policies (in real problems, the number of states is very large)

Bellman’s Equation

If we choose an action a:

$$U(s) = R(s) + \gamma \sum_{s'} T(s,a,s') U(s')$$
Bellman’s Equation

If we choose an action \(a \):

\[
U(s) = R(s) + \gamma \sum_{s'} T(s, a, s') U(s')
\]

In particular, if we always choose the action \(a \) that maximizes future rewards (optimal policy), \(U(s) \) is the maximum \(U^*(s) \) we can get over all possible choices of actions:

\[
U^*(s) = R(s) + \gamma \max_a (\sum_{s'} T(s, a, s') U^*(s'))
\]

Bellman’s Equation

\[
U^*(s) = R(s) + \gamma \max_a (\sum_{s'} T(s, a, s') U^*(s'))
\]

- The optimal policy (choice of \(a \) that maximizes \(U \)) is:

\[
\pi^*(s) = \arg\max_a (\sum_{s'} T(s, a, s') U^*(s'))
\]
Why it cannot be solved directly

\[U^*(s) = R(s) + \gamma \max_a \left(\sum_{s'} T(s,a,s') U^*(s') \right) \]

- The optimal policy (choice of \(a \) that maximizes \(U \)) is:

\[\pi^*(s) = \arg\max_a \left(\sum_{s'} T(s,a,s') U^*(s') \right) \]

Expected sum of rewards using policy \(\pi^* \) → The right-hand depends on the unknown. Cannot solve directly!

First Solution: Value Iteration

- Define \(U_1(s) = \text{best value after one step} \)

\[U_1(s) = R(s) \]

- Define \(U_2(s) = \text{best possible value after two steps} \)

\[U_2(s) = R(s) + \gamma \max_a \left(\sum_{s'} T(s,a,s') U_1(s') \right) \]

\[\cdots \]

- Define \(U_k(s) = \text{best possible value after} \ k \ \text{steps} \)

\[U_k(s) = R(s) + \gamma \max_a \left(\sum_{s'} T(s,a,s') U_{k-1}(s') \right) \]
First Solution: Value Iteration

• Define $U_1(s) = \text{best value after one step}$
 \[U_1(s) = R(s) \]

• Define $U_2(s) = \text{best value after two steps}$
 \[U_2(s) = R(s) + \gamma \max_a \left(\sum_{s'} T(s,a,s') U_1(s') \right) \]

• Define $U_k(s) = \text{best value after } k \text{ steps}$
 \[U_k(s) = R(s) + \gamma \max_a \left(\sum_{s'} T(s,a,s') U_{k-1}(s') \right) \]

Maximum possible expected sum of discounted rewards that I can get if I start at state s and I survive for k time steps.

Example

• I run a company
• I can choose to either save money or spend money on advertising
• If I advertise, I may become famous (50% prob.) but will spend money so I may become poor
• If I save money, I may become rich (50% prob.), but I may also become unknown because I don’t advertise
• What should I do?
Value Iteration

<table>
<thead>
<tr>
<th></th>
<th>PU</th>
<th>PF</th>
<th>RU</th>
<th>RF</th>
</tr>
</thead>
<tbody>
<tr>
<td>U_1</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>U_2</td>
<td>0</td>
<td>4.5</td>
<td>14.5</td>
<td>19</td>
</tr>
<tr>
<td>U_3</td>
<td>2.03</td>
<td>8.55</td>
<td>16.53</td>
<td>25.08</td>
</tr>
<tr>
<td>U_4</td>
<td>4.76</td>
<td>12.2</td>
<td>18.35</td>
<td>28.72</td>
</tr>
<tr>
<td>U_5</td>
<td>7.63</td>
<td>15.07</td>
<td>20.40</td>
<td>31.18</td>
</tr>
<tr>
<td>U_6</td>
<td>10.21</td>
<td>17.46</td>
<td>22.61</td>
<td>33.21</td>
</tr>
<tr>
<td>U_7</td>
<td>12.45</td>
<td>19.54</td>
<td>24.77</td>
<td>35.12</td>
</tr>
</tbody>
</table>

$$U_k(s) = R(s) + \gamma \max_a \left(\sum_{s'} T(s,a,s') U_{k-1}(s') \right)$$
Value Iteration: Facts

- As k increases, $U_k(s)$ converges to a value $U^*(s)$

- The optimal policy is then given by:
 \[\pi^*(s) = \arg\max_a \left(\sum_{s'} T(s,a,s') U^*(s') \right) \]

- And U^* is the utility under the optimal policy π^*
 - See convergence proof in R&N
Upon convergence:

\[\pi^*(s) = \arg\max_a \left(\sum_{s'} T(s,a,s') U^*(s') \right) \]

\[\pi^*(PU) = A \quad \pi^*(PF) = S \]
\[\pi^*(RU) = S \quad \pi^*(RF) = S \]

Better to always save except if poor and unknown

Maze Example

![Maze Example Diagram]
Key Convergence Results

- The error on U is reduced by γ at each iteration
- Exponentially fast convergence
- Slower convergence as γ increases

So far....

- Definition of discounted sum of rewards to measure utility
- Definition of Markov Decision Processes (MDP)
- Assumes observable states and uncertain action outcomes
- Optimal policy = choice of action that results in the maximum expected rewards in the future
- Bellman equation for general formulation of optimal policy in MDP
- Value iteration (dynamic programming) technique for computing the optimal policy
- Next: Other approaches for optimal policy computation + examples and demos.
Another Solution: Policy Iteration

- Start with a randomly chosen policy π_0
- Iterate until convergence ($\pi_k \sim \pi_{k+1}$):
 1. Compute $U_k(s)$ for every state s using π_k
 2. Update the policy by choosing the best action given the utility computed at step k:

$$\pi_{k+1}(s) = \arg\max_a \left(\sum_{s'} T(s,a,s') \ U_k(s') \right)$$

The sequence of policies $\pi_0, \pi_1, \ldots, \pi_k, \ldots$ converges to π^*

Evaluating a Policy

1. Compute $U_k(s)$ for every state s using π_k

$$U_k(s) = R(s) + \gamma \sum_{s'} T(s, \pi_k(s), s') \ U_k(s')$$

Linear set of equations can be solved in $O(|S|^3)$

May be too expensive for $|S|$ large, use instead simplified update:

$$U_k(s) \leftarrow R(s) + \gamma \sum_{s'} T(s, \pi_k(s), s') \ U_{k-1}(s')$$

(modified policy iteration)
1. Compute $U_k(s)$ for every state s using

$$U_k(s) = R(s) + \gamma \sum_{s'} T(s, \pi_k(s), s') U_k(s')$$

Linear set of equations can be solved in $O(|S|^3)$. May be too expensive for $|S|$ large, use instead simplified update:

$$U_k(s) \leftarrow R(s) + \gamma \sum_{s'} T(s, \pi_k(s), s') U_{k-1}(s')$$

(modified policy iteration)

Comparison

- **Value iteration:**
 - *(Relatively)* small number of actions
- **Policy iteration:**
 - Large number of actions
 - Initial guess at a good policy
- **Combined policy/value iteration is possible**
- **Note:** No need to traverse all the states in a fixed order at every iteration
 - Random order ok
 - Predict "most useful" states to visit
 - Prioritized sweeping ➔ Choose the state with largest value to update
 - States can be visited in any order, applying either value or policy iteration ➔ *asynchronous* iteration
Limitations

- We need to represent the values (and policy) for every state in principle
- In real problems, the number of states may be very large
- Leads to untractably large tables (checker-like problem with N cells and M pieces $\rightarrow N(N-1)(N-2)\ldots(N-M)$ states!)
- Need to find a compact way of representing the states

Solutions:
 - Interpolation
 - Memory-based representations
 - Hierarchical representations

<table>
<thead>
<tr>
<th>State s</th>
<th>Value U</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_1</td>
<td></td>
</tr>
<tr>
<td>s_2</td>
<td></td>
</tr>
<tr>
<td>........</td>
<td></td>
</tr>
<tr>
<td>s_{100000}</td>
<td></td>
</tr>
<tr>
<td>s_{100001}</td>
<td></td>
</tr>
</tbody>
</table>

Function Approximation

Polynomials/Splines approximation:
Represent $U(s)$ by a polynomial function that can be represented by a small number of parameters.

Economic models, control
Operations Research
Channel routing, Radio therapy

Neural Nets:
Represent $U(s)$ implicitly by a neural net (function interpolation).

Elevator scheduling, Cell phones, Backgammon, etc.
Memory-Based Techniques

States stored in memory

\[U(s) = ? \]

Replace \(U(s) \) by \(U(\text{closest neighbor to } s) \)

States stored in memory

\[U(s) = ? \]

Replace \(U(s) \) by weighted average of \(U(K \text{ closest neighbor to } s) \)

Hierarchical Representations

- Split a state into smaller states when necessary
- Hierarchy of states with high-level managers directing lower-level servants

Example from Dayan, “Feudal learning”.
More Difficult Case

Uncertainty on transition from one state to the next as before because of imperfect actuators.

But, now we have also:

Uncertainty on our knowledge of the state we’re in because of imperfect sensors.

The state is only partially observable: Partially Observable Markov Decision Process (POMDP)
POMDP

• As before:
 – States, \(s \)
 – Actions, \(a \)
 – Transitions, \(T(s,a,s') = P(s'|a,s) \)

• New:
 – The state is not directly observable, instead:
 – Observations, \(o \)
 – Observation model, \(O(s,o) = P(o|s) \)
POMDP: What is a “policy”?

- We don’t know for sure which state we’re in, so it does not make sense to talk about the “optimal” choice of action for a state

- All we can define is the probability that we are in any given state:
 \[b(s) = [P(s_1),...,P(s_N)] \]

- Policy: Choice of action for a given belief state
 \(\pi(b) \): belief state \(b \) to action \(a \)

MDP with belief states instead of states
Unfortunately:
- Requires continuous representation
- Untractable in general
- Approximations or special cases

- All we can define is the probability that we are in any given state:
 \[b(s) = [P(s_1),...,P(s_N)] \]

- Policy: Choice of action for a given belief state
 \(\pi(b) \): belief state \(b \) to action \(a \)

“belief state”
Probability that the agent is in state \(s_k \)
Summary

- Definition of discounted sum of rewards to measure utility
- Definition of Markov Decision Processes (MDP)
- Assumes observable states and uncertain action outcomes
- Optimal policy = choice of action that results in the maximum expected rewards in the future
- Bellman equation for general formulation of optimal policy in MDP
- Value iteration technique for computing the optimal policy
- Policy iteration technique for computing the optimal policy
- MDP = generalization of the deterministic search techniques studied earlier in class
- POMDP = MDP + Uncertainty on the observed states