Playing and Solving Games

Zero-sum games with perfect information
R&N 6

- Definitions
- Game evaluation
- Optimal solutions
 - Minimax
 - Alpha-beta pruning
- Approximations
 - Heuristic evaluation functions
 - Cutoffs
 - Endgames
- Non-deterministic games (first take)
Types of Games (informal)

<table>
<thead>
<tr>
<th>Perfect Information</th>
<th>Deterministic</th>
<th>Perfect Information</th>
<th>Deterministic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chess, Checkers, Go</td>
<td>Backgammon, Monopoly</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Battleship</td>
<td>Bridge, Poker, Scrabble, Nuclear war</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: This initial material uses the common definition of what a “game” is. More interesting is the generalization of the theory to scenarios that are far more useful to a wide range of decision making problems. Stay tuned….
Definitions

- **Two-player game**: Player A and B. Player A starts.
- **Deterministic**: None of the moves/states are subject to chance (no random draws).
- **Perfect information**: Both players see all the states and decisions. Each decision is made sequentially.
- **Zero-sum**: Player’s A gain is exactly equal to player B’s loss. One of the player’s must win or there is a draw (both gains are equal).

Example

- Initially a stack of pennies stands between two players
- Each player divides one of the current stacks into two unequal stacks.
- The game ends when every stack contains one or two pennies
- The first player who cannot play loses
Search Problem

- **States**: Board configuration + next player to move
- **Successor**: List of states that can be reached from the current state through of legal moves
- **Terminal state**: States at which the games ends
- **Payoff/Utility**: Numerical value assigned to each terminal state. Example:
 - \(U(s) = +1 \) for A win, \(-1\) for B win, 0 for draw
- **Game value**: The value of a terminal that will be reached assuming optimal strategies from both players (minimax value)
- **Search**: Find move that maximizes game value from current state
Optimal (minimax) Strategies

- Search the game tree such that:
 - A’s turn to move → find the move that yields maximum payoff from the corresponding subtree → This is the move most favorable to A
 - B’s turn to move → find the move that yields minimum payoff (best for B) from the corresponding subtree → This is the move most favorable to B
Minimax

Minimax (s)

If s is terminal
Return $U(s)$

If next move is A
Return $\max \limits_{s' \in \text{Succ}(s)} \text{Minimax}(s')$

Else
Return $\min \limits_{s' \in \text{Succ}(s)} \text{Minimax}(s')$

\[
\begin{align*}
3 &= \max(3, 2, 2) \\
3 &= \min(3, 12, 8)
\end{align*}
\]
Minimax Properties

- **Complete**: If finite game
- **Optimal**: If opponent plays optimally
- **Complexity**: Essentially DFS, so:
 - Time: $O(B^m)$
 - Space: $O(B^m)$
 - $B =$ number of possible moves from any state (branching factor)
 - $m =$ depth of search (length of game)

Pruning

- The value at A move is 8 (so far)
- If A moves right, the value there is 1 (so far)
- B will *never increase* the value at this node; it will always be less than 8
- B can *ignore* the remaining nodes
Pruning

- Maintain:
 - \(\alpha \) = Best value found so far at A nodes, including those at current node
 - \(\beta \) = Best value found so far at B nodes, including those at current node

- If at a B node: No need to expand this node any further if \(\alpha \geq \beta \) because there is no way that a descendant of the current node can yield a better value
Minimax \((s, \alpha, \beta)\)

If \(s\) is terminal
 Return \(U(s)\)

If \(A\) node
 For each \(s'\) in \(\text{Succs}(s)\)
 \(\alpha = \text{Max}(\alpha, \text{Minimax}(s', \alpha, \beta))\)
 If \((\alpha \geq \beta)\) Return \(\beta\)
 Return \(\alpha\)

If \(B\) node
 For each \(s'\) in \(\text{Succs}(s)\)
 \(\beta = \text{Min}(\beta, \text{Minimax}(s', \alpha, \beta))\)
 If \((\alpha \geq \beta)\) Return \(\alpha\)
 Return \(\beta\)
Properties

- Guaranteed to find same solution
- \(O(B^{m/2}) \) with proper ordering of the nodes → At “A” node, the successor are in order from high to low score
- Use heuristic evaluation functions to cut off search early
- Example: Weighted sum of number of pieces (material value of state)
- Stop search based on cutoff test (e.g., maximum depth)
- Iterative deepening search to limit DFS
- Solve by brute-force dynamic programming when the number of states is small

Choice of Value?

- Absolute game value is different in the two cases
- Minimax solution is the same
- Only the relative ordering of values matters, not the absolute values → ordinal utility values
- True only for deterministic games
- Evaluation functions can be any function that preserves the ordering of the utility values
Non-Deterministic Games

A

Chance

B

Non-Deterministic Games
Non-Deterministic Games

Includes states where neither player makes a choice. A random decision is made (e.g., rolling dice)

Use expected value of successors at chance nodes:
\[
\sum_{s' \in \text{Succ}(s)} p(s') \text{MiniMax}(s')
\]

Choice of Utility Values

Different utility values may yield radically different result even though the order is the same → Absolute utility values do matter

Utility should be proportional to actual payoff, it is not sufficient to follow the same order

Think of choosing between 2 lotteries with same odds but radically different payoff distributions

Implication: Evaluation functions must be \textit{linear positive} functions of utility

Kind of obvious but important consideration for later developments
Non-Deterministic Minimax

Minimax \((s)\)

If \(s\) is terminal
Return \(U(s)\)

If next move is \(A\):
Return \(\max_{s' \in \text{Succ}(s)} \text{Minimax}(s')\)

If next move is \(B\):
Return \(\min_{s' \in \text{Succ}(s)} \text{Minimax}(s')\)

If chance node
Return \(\sum_{s' \in \text{Succ}(s)} p(s') \text{Minimax}(s')\)

Properties

- \(\alpha-\beta\) pruning can be extended provided that the utility values are bounded \(\rightarrow\) We don’t need to evaluate all the children of a chance node to bound the average
- Less effective
- Different outcomes depending on exact values of utility, not just ordering
• Definitions
• Game evaluation
• Optimal solutions
 – Minimax
 – Alpha-beta pruning
• Approximations
 – Heuristic evaluation functions
 – Cutoffs
 – Endgames
• Non-deterministic games