Planning

R&N Chap. 11
(and a tiny snippet of Chap. 8-9)

Limitations of Prop. Logic

• Not very expressive: To represent the fact that a flight can originate from any of n airports, we need n symbols: FlyFromPITT, FlyFromSFO, FlyFromORC,…
• Instead we would like to use more expressive sentences like:
 For any airport x, FlyFrom(x)
 \rightarrow First order logic (FOL)
FOL (The *extremely* short version!!)

- Same as before, plus:
 - Quantifiers: \forall, \exists
 - Variables: x, y, z
 - Predicates: $P(x, y) = \text{logical expression with value True/False}$
 - Functions: $F(x)$

\[\forall x, y, z \quad \text{Parent}(z, x) \land \text{Parent}(z, y) \Rightarrow \text{Sibling}(x, y) \]

FOL

- **Substitution**: Replace a part of the sentence by another one.

 \[\text{SUBST}({x/John}, \text{Rich}(x)) \Rightarrow \text{Rich}(John) \]

- **Unification**: Find parts of two sentences that are identical after some substitution

 \[\text{UNIFY(} \text{SameCountry}(F(x), y), \text{SameCountry}(John, Mary) = \{F(x)/John, y/Mary}\right) \]
FOL Inference: Resolution

• Resolution: Resolution can be extended to FOL, but more complicated

\[
\frac{l_1 \lor l_2 \quad m_1 \lor m_2}{\text{SUBST}(\theta, l_1 \lor m_1)}
\]

\[
\theta = \text{UNIFY}(l_2, \neg m_2)
\]

\[
\text{UnHappy}(x) \lor \neg \text{Rich}(x) \quad \text{Rich}(John)
\]

\[
\text{UnHappy}(John)
\]

\[
\theta = \{x / John\}
\]

After some substitution, \(l_2\) and \(\neg m_2\) are the same

FOL Inference: Chaining

• Chaining: Forward/backward chaining idea can be extended to KBs with sentences of the form:

\[
A_1 \lor A_2 \lor A_3 \ldots \Rightarrow B
\]

\[
\text{WindowsLocked}(x) \lor \text{DoorLocked}(x) \Rightarrow \text{RoomSecure}(x)
\]
Summary

• FOL provides more compact way of representing KBs
• CNF, resolution and forward/backward chaining concepts exists in FOL
• Properties of soundness, completeness

A Simple Task

• Task: Find a sequence of moves that will go from the configuration with 3 blocks on the table to a configuration with the 3 blocks stacked on top of each other in the A,B,C order.
A Simple Task

1. Move B from the table and stack it on top of A
2. Move C from the table and stack it on top of B

- Task: Find a sequence of moves that will go from the configuration with 3 blocks on the table to a configuration with the 3 blocks stacked on top of each other in the A,B,C order.

Describe the starting configuration by a KB:
- On(A,Table) ^
- On(B,Table) ^
- On(C,Table) ^
- Clear(A) ^ Clear(B) ^ Clear(C)

Describe the goal configuration by a KB:
- On(A,Table) ^
- On(B,A) ^
- On(C,B)
Describe the starting configuration by a KB:

\[\text{On}(A, \text{Table}) \land \text{On}(B, \text{Table}) \land \text{On}(C, \text{Table}) \land \text{Clear}(A) \land \text{Clear}(B) \land \text{Clear}(C) \]

Describe the goal configuration by a KB:

\[\text{On}(A, \text{Table}) \land \text{On}(B, A) \land \text{On}(C, B) \]

Predicates representing the constraints on the components of the environments

Symbols representing the constraints on the components of the environments

Describe each possible action by a pair Precondition/Effect:

Action: PutOn(r, x, y)

PRECONDITION:
\[\text{On}(r, x) \land \text{Clear}(r) \land \text{Clear}(y) \]

EFFECT:
\[\text{On}(r, y) \land \text{Clear}(x) \land \neg \text{On}(r, x) \land \neg \text{Clear}(y) \]

In words: Move block \(r \) from top of \(x \) to top of \(y \)
Describe each possible action by a pair

Precondition/Effect:

Action: PutOnTable(r, x)

PRECONDITION: On(r, x) \(^\wedge\) Clear(r)

EFFECT: On(r, Table) \(^\wedge\) Clear(x) \(^\wedge\) \neg On(r, x)

In words: Move block r from top of x to table

Planning Problem as Search

PutOn(C, Table, A)
On(C,A) \(^\wedge\) On(B,Table) \(^\wedge\) \neg Clear(A) \(^\wedge\) Clear(B) \(^\wedge\) Clear(C)

PutOn(B, Table, A)
On(B,A) \(^\wedge\) On(C,Table) \(^\wedge\) \neg Clear(A) \(^\wedge\) Clear(B) \(^\wedge\) Clear(C)

PutOn(C, Table, B)
On(B,A) \(^\wedge\) On(C,B) \(^\wedge\) \neg Clear(A) \(^\wedge\) \neg Clear(B) \(^\wedge\) Clear(C)
Planning Problem as Search

Each state is a knowledge base describing the configuration of the world.

States are linked by actions. An action links two states if the precondition of the action is satisfied in the starting state and the effect is consistent with the end state.

- **States**: KBs representing the possible configurations of the world.
- **Arcs**: Actions allowed between states.
- Any of the previous search techniques can be used for planning in this graph (defined implicitly).
- **Forward planning**: Search from the start configuration until the goal configuration is reached.
- **Backward planning**: Search backward from the goal configuration until the start configuration is reached.

\(a_{ij} \) is a valid action if
\(S_i \) satisfies \(\text{PRECONDITION}(a_{ij}) \)
\(S_j \) satisfies \(\text{EFFECT}(a_{ij}) \)
Notation

PutOn(r, x, y)

PRECONDITION:

\[\text{On}(r, x) \land \text{Clear}(r) \land \text{Clear}(y) \]

EFFECT:

\[\text{On}(r, y) \land \text{Clear}(x) \land \neg \text{On}(r, x) \land \neg \text{Clear}(y) \]

- Describing the actions is actually quite tricky.
- **Frame problem:** Should we represent the effect of “PutOn” on the other variables? If we do, we need to enumerate explicitly all of the variables in the world!
- **One solution:** It is implicitly assumed that any symbol not mentioned in the EFFECT remains untouched.
- The particular notation used here (which uses this approach) is called the **STRIPS notation** (named after a famous Stanford system.)

Forward planning can be stupid

Looking forward from the START state, there is no way to anticipate which actions are relevant to reaching the goal → Need to explore a large number of completely irrelevant actions
Heuristics

- Search is in general inefficient. Can we use heuristics to speed up the search?
- General heuristics: Try to guess a lower bound on the number of actions necessary to achieve the goal.
- Example (relaxed problems): First assume that the actions have no preconditions and find a set of the actions leading to the goal configurations (easier problem) \(\rightarrow\) Provides a lower bound on the number of actions to reach the goal
- \(A^*\) and related search techniques can be used to take advantage of heuristics.

Another way to look at planning

- Instead of searching through the graph of possible world states linked by actions, we could do the opposite: Search through the set of possible plans = (informally) sequences of actions
- In fact, in many cases we can find partial plans that can be combined into a complete plan \(\rightarrow\) (hopefully) more efficient search
- Formally: Partial-Order Planning (POP)
Example

- The nodes are now actions instead of world states
- START and FINISH are dummy nodes
- Two nodes A and A’ are linked if the effect of A is a precondition for A’
- The actions are partially ordered: Some actions must occur before others
- Important: We don’t need a single, totally ordered, sequence of actions

POP Algorithm

Partial plan is:

- Set of actions included in the plan
 - Example: Remove(Flat,Axle))
- Set of ordering constraints: $A < B$ means “action A must occur before action B”
- Set of links: $A \rightarrow_{c} B$
 - C is an effect of A
 - C is a precondition of B
 - Example: Remove(Spare,Trunk) $\rightarrow_{\text{At}(Spare,\text{Ground})} \text{PutOn}(\text{Spare},\text{Axle})$
POP Algorithm

Two dummy nodes:

- **START:**
 - Precondition = None
 - Effect = Initial configuration of the world

- **FINISH:**
 - Precondition = Goal configuration of the world
 - Effect = None

- Initial plan contains only START and FINISH with the ordering START < FINISH

Open preconditions = Precondition of an action in the plan that is not an effect of another action in the plan

- The plan is incomplete as long as there are open preconditions
POP Algorithm
• Initialize with {START, FINISH} nodes
• Repeat:
 – Find an open precondition C of an action B in the plan
 – Find an action A such that the effect of A meets the precondition C and add:
 • $A \rightarrow_c B$
 • $A < B$ (A must take place before B)
 – Verify that the plan is still consistent
• Until there are no open preconditions

Initialize with two actions:
START with two effects
FINISH with one precondition

START
At(Spare,Trunk)
At(Flat,Axle)

At(Spare,Axle)
FINISH
At(Spare, Trunk) At(Spare, Ground) ¬At(Flat, Axle)

PutOn(Spare, Axle)

At(Spare, Axle)

FINISH

Find an action to resolve the open precondition **At(Spare, Axle)**
We now have two more open preconditions

At(Spare, Trunk) Remove(Spare, Trunk)

START

At(Spare, Trunk) At(Spare, Ground) ¬At(Flat, Axle)

PutOn(Spare, Axle)

At(Spare, Axle)

FINISH

Find an action to resolve the open precondition **At(Spare, Ground)**
We now have two open preconditions
Find an action to resolve the open precondition \textbf{At(Spare,Trunk)}
We now have one open precondition

Find an action to resolve the open precondition \textbf{\neg At(Flat,Axle)}
We now have one open precondition
Find an action to resolve the open precondition \textit{At(Flat, Axle)}

We now have \textit{no} open precondition left

- Initialize with \{START, FINISH\} nodes
- Repeat:
 - Find an open precondition \(C\) of an action \(B\) in the plan
 - Find an action \(A\) such that the effect of \(A\) meets the precondition \(C\) and add:
 - \(A \rightarrow_c B\)
 - \(A < B\) (\(A\) must take place before \(B\))
 - Verify that the plan is still consistent
- Until there are no open preconditions
• Initialize with \{START, FINISH\} nodes
• Repeat:
 – Find an open precondition \(C\) of an action \(B\) in the plan
 – Find an action \(A\) such that the effect of \(A\) meets the precondition \(C\) and add:
 • \(A \rightarrow_c B\)
 • \(A < B\) (\(A\) must take place before \(B\))
 – Verify that the plan is still consistent
• Until there are no open preconditions

Consistency:
If an existing action \(E\) in the plan conflicts with \(A \rightarrow_c B\):
Try to add the ordering constraint \(E > B\) or \(A > E\)
If no consistent ordering can be found:
Give up on adding \(A\)

The new action \(\text{LeaveCar}\) could be inserted to fulfill the open precondition \(\neg \text{At(Flat,Axle)}\).
However, the order in which the actions are inserted is important.
The effect \(\neg \text{At(Spare,Ground)} \) of LeaveCar conflicts with the link: \(\text{Remove(Spare,Trunk)} \) \(\rightarrow \) \(\text{At(Spare,Ground)} \) \(\rightarrow \) \(\text{PutOn(Spare,Axle)} \)

It must be ordered \textit{before} \(\text{Remove(Spare,Trunk)} \)

The POP Algorithm

- POP is particularly effective when the problem can be decomposed into subproblems \(\rightarrow \) More flexibility in the search because we do not require a strictly ordered sequence of actions.
- POP is sound
- POP is complete (e.g., with breadth first search or iterative deepening)
Summary

• Configuration of the world = KB
• Actions = Preconditions + Effect
• STRIPS notation
• Planning = Find set of actions from start to goal configurations of the world
• Planning as search through the valid world configurations linked by valid actions between configurations
 – Backward search generally more effective
 – All the arsenal of heuristic search can be used
• Partial-Order Planning (POP): Planning as search through the possible plans.
 – Construct partial plans, combined by taking into account ordering constraints.
 – Takes advantages of decomposable sub-plans and sub-goals

What is potentially a serious limitation in trying to use logic-based representations for reasoning and planning in real-world scenarios?