Deterministic Finite Automata

A machine so simple that you can understand it in less than one minute

Wishful thinking...

The machine accepts a string if the process ends in a double circle

Anatomy of a Deterministic Finite Automaton

The singular of automata is automaton.

The alphabet of a finite automaton is the set where the symbols come from, for example \(\{0, 1\}\)

The language of a finite automaton is the set of strings that it accepts

The Language \(L(M)\) of Machine \(M\)

\[L(M) = \text{All strings of 0s and 1s} \]

The language of a finite automaton is the set of strings that it accepts
The **Language** $L(M)$ of Machine M

- $L(M) = \{ w \mid w \text{ has an even number of 1s} \}$

Notation

- An alphabet Σ is a finite set (e.g., $\Sigma = \{0, 1\}$)
- A string over Σ is a finite-length sequence of elements of Σ
- For x a string, $|x|$ is the length of x
- The unique string of length 0 will be denoted by ε and will be called the empty or null string
- A **language** over Σ is a set of strings over Σ

A finite automaton is $M = (Q, \Sigma, \delta, q_0, F)$

- Q is the finite set of states
- Σ is the alphabet
- $\delta : Q \times \Sigma \rightarrow Q$ is the transition function
- $q_0 \in Q$ is the start state
- $F \subseteq Q$ is the set of accept states

$L(M) = \text{the language of machine } M = \text{set of all strings machine } M \text{ accepts}$

Example

Build an automaton that accepts all and only those strings that contain **001**

The finite-state automata are deterministic, if for each pair $Q \times \Sigma$ of state and input value there is a unique next state given by the transition function.

There is another type machine in which there may be several possible next states. Such machines called **nondeterministic**.
A language over \(\Sigma \) is a set of strings over \(\Sigma \).

A language is **regular** if it is recognized by a deterministic finite automaton.

Let \(L = \{ w \mid w \text{ contains 001} \} \) be regular.

Let \(L = \{ w \mid w \text{ has an even number of 1s} \} \) be regular.

Determine the language recognized by

\[
L(M) = \{ 1^n \mid n = 0, 1, 2, \ldots \}
\]

Determine the language recognized by

\[
L(M) = \{ 0^n, 0^n1x \mid n=0,1,2,\ldots, \text{and } x \text{ is any string} \}
\]

DFA Membership problem

Determine whether some word belongs to the language.

Theorem: The DFA Membership Problem is solvable in linear time.

Let \(M = (Q, \Sigma, \delta, q_0, F) \) and \(w = w_1 \ldots w_m \).

Algorithm for DFA \(M \):

1. \(p := q_0 \);
2. for \(i := 1 \) to \(m \) do \(p := \delta(p, w_i) \);
3. if \(p \in F \) then return Yes else return No.
Equivalence of two DFAs

Definition: Two DFAs M_1 and M_2 over the same alphabet are equivalent if they accept the same language: $L(M_1) = L(M_2)$.

Given a few equivalent machines, we are naturally interested in the smallest one with the least number of states.

Theorem: The union of two regular languages is also a regular language.

Proof (Sketch): Let $M_1 = (Q_1, \Sigma, \delta_1, q_0, F_1)$ be finite automaton for L_1 and $M_2 = (Q_2, \Sigma, \delta_2, q_0, F_2)$ be finite automaton for L_2.

We want to construct a finite automaton $M = (Q, \Sigma, \delta, q_0, F)$ that recognizes $L = L_1 \cup L_2$.

Idea: Run both M_1 and M_2 at the same time!

$Q = \text{pairs of states, one from } M_1 \text{ and one from } M_2 = \{(q_1, q_2) \mid q_1 \in Q_1 \text{ and } q_2 \in Q_2\} = Q_1 \times Q_2$

Automaton for Union
The Regular Operations

Union: \(A \cup B = \{ w \mid w \in A \text{ or } w \in B \} \)

Intersection: \(A \cap B = \{ w \mid w \in A \text{ and } w \in B \} \)

Negation: \(\neg A = \{ w \mid w \notin A \} \)

Reverse: \(A^R = \{ w_1 \ldots w_k \mid w_k \ldots w_1 \in A \} \)

Concatenation: \(A \cdot B = \{ vw \mid v \in A \text{ and } w \in B \} \)

Star: \(A^* = \{ w_1 \ldots w_k \mid k \geq 0 \text{ and each } w_i \in A \} \)

Reverse

Reverse: \(A^R = \{ w_1 \ldots w_k \mid w_k \ldots w_1 \in A \} \)

How to construct a DFA for the reversal of a language?

The direction in which we read a string should be irrelevant. If we flip transitions around we might not get a DFA.

The Kleene closure: \(A^* \)

Star: \(A^* = \{ w_1 \ldots w_k \mid k \geq 0 \text{ and each } w_i \in A \} \)

From the definition of the concatenation, we define \(A^n \), \(n = 0, 1, 2, \ldots \) recursively

\(A^0 = \{ \varepsilon \} \)

\(A^{n+1} = A^n \cdot A \)

\(A^* \) is a set consisting of concatenations of arbitrary many strings from \(A \).

\(A^* = \bigcup_{k=0}^{\infty} A^k \)

The Kleene closure: \(A^* \)

What is \(A^* \) of \(A = \{0,1\} \)?

All binary strings

What is \(A^* \) of \(A = \{11\} \)?

All binary strings of an even number of 1s

Regular Languages Are Closed Under The Regular Operations

We have seen part of the proof for Union. The proof for intersection is very similar. The proof for negation is easy.

Theorem: Any finite language is regular

Claim 1: Let \(w \) be a string over an alphabet. Then \(\{w\} \) is a regular language.

Proof: By induction on the number of characters. If \(\{a\} \) and \(\{b\} \) are regular then \(\{ab\} \) is regular.

Claim 2: A language consisting of \(n \) strings is regular

Proof: By induction on the number of strings. If \(\{a\} \) then \(LU(a) \) is regular.
Pattern Matching

Input: Text T of length t, string S of length n

Problem: Does string S appear inside text T?

Naïve method:

$$a_1, a_2, a_3, a_4, a_5, \ldots, a_t$$

Cost: Roughly nt comparisons

Automata Solution

Build a machine M that accepts any string with S as a consecutive substring

Feed the text to M

Cost: t comparisons + time to build M

As luck would have it, the Knuth, Morris, Pratt algorithm builds M quickly

Real-life Uses of DFAs

- Grep
- Coke Machines
- Thermostats (fridge)
- Elevators
- Train Track Switches
- Lexical Analyzers for Parsers

Are all languages regular?

Consider the language $L = \{ a^n b^n \mid n > 0 \}$

i.e., a bunch of a's followed by an equal number of b's

No finite automaton accepts this language

Can you prove this?

$a^n b^n$ is not regular.
No machine has enough states to keep track of the number of a's it might encounter
That is a fairly weak argument

Consider the following example...

$L = \text{strings where the \# of occurrences of the pattern } ab \text{ is equal to the number of occurrences of the pattern } ba$

Can’t be regular. No machine has enough states to keep track of the number of occurrences of ab

$L = \text{strings where the \# of occurrences of the pattern } ab \text{ is equal to the number of occurrences of the pattern } ba$

Can’t be regular. No machine has enough states to keep track of the number of occurrences of ab

M accepts only the strings with an equal number of ab’s and ba’s!

Let me show you a professional strength proof that $a^n b^n$ is not regular...

How to prove a language is not regular...

Assume it is regular, hence is accepted by a DFA M with n states.

Show that there are two strings s_1 and s_2 which both reach some state in M (usually by pigeonhole principle)

Then show there is some string t such that string $s_1 t$ is in the language, but $s_2 t$ is not. However, M accepts either both or neither.
Pigeonhole principle:

If we put n objects into m pigeonholes and if $n > m$, then at least one pigeonhole must have more than one item in it.

Theorem: $L = \{a^n b^n \mid n > 0 \}$ is not regular

Proof (by contradiction):

Assume that L is regular, $M = (Q, \{a,b\}, \delta, q_0, F)$

Consider $\delta(q_0, a)$ for $i = 1, 2, 3, \ldots$

There are infinitely many i's but a finite number of states.

$\delta(q_0, a^n) = q$ and $\delta(q_0, a^m) = q$, and $n \neq m$

Since M accepts $a^n b^n$, $\delta(q, b^n) = q_f$

Since M accepts $a^n b^n$, $\delta(q_0, a^n b^n) = \delta(\delta(q_0, a^n), b^n) = \delta(q, b^n) = q_f$

It follows that M accepts $a^m b^n$, and $n \neq m$

The finite-state automata are deterministic, if for each pair of state and input value there is a unique next state given by the transition function.

There is another type machine in which there may be several possible next states. Such machines called nondeterministic.

Nondeterministic finite automaton (NFA)

A NFA is defined using the same notations $M = (Q, \Sigma, \delta, q_0, F)$ as DFA except the transition function δ assigns a set of states to each pair of state and input.

Note, every DFA is automatically also a NFA.

Nondeterministic finite automaton

[Diagram of NFA for $\{0^k \mid k \text{ is a multiple of 2 or 3}\}$]

Allows transitions from q_k on the same symbol to many states
What does it mean that for a NFA to recognize a string $x = x_1x_2...x_k$?

Since each input symbol x_j (for $j>1$) takes the previous state to a set of states, we shall use a union of these states.

What does it mean that for a NFA to recognize a string? Here we are going formally define this.

For a state q and string w, $\delta'(q, w)$ is the set of states that the NFA can reach when it reads the string w starting at the state q.

Thus for NFA $= (Q, \Sigma, \delta, q_0, F)$, the function $\delta^*: Q \times \Sigma^* \rightarrow 2^Q$ is defined by $\delta^*(q, y x_k) = \cup_{p \in \delta(q, y)} \delta(p, x_k)$.

Find the language recognized by this NFA

$L = \{0^n, 0^n01, 0^n11 \mid n = 0, 1, 2\ldots\}$

Find the language recognized by this NFA

$L = 1^*(01, 1, 10)(00)^*$

Nondeterministic finite automaton

Theorem.
If the language L is recognized by a NFA M_0, then L is also recognized by a DFA M_1.

In other words, if we ask if there is a NFA that is not equivalent to any DFA. The answer is No.

NFA vs. DFA

Advantages.
Easier to construct and manipulate.
Sometimes exponentially smaller.
Sometimes algorithms much easier.

Drawbacks.
Acceptance testing slower.
Sometimes algorithms more complicated.
• DFA
• NFA