Recap

Theorem: Let G be a graph with n nodes and e edges
The following are equivalent:
1. G is a tree (connected, acyclic)
2. Every two nodes of G are joined by a unique path
3. G is connected and $n = e + 1$
4. G is acyclic and $n = e + 1$
5. G is acyclic and if any two non-adjacent points are joined by a line, the resulting graph has exactly one cycle

Cayley’s Formula
The number of labeled trees on n nodes is $n^{n/2}$

A graph is planar if it can be drawn in the plane without crossing edges
Planar Graphs

http://www.planarity.net

Euler’s Formula
If G is a connected planar graph with n vertices, e edges and f faces, then \(n - e + f = 2 \)

Graph Coloring
A coloring of a graph is an assignment of a color to each vertex such that no neighboring vertices have the same color

Spanning Trees
A spanning tree of a graph G is a tree that touches every node of G and uses only edges from G
Every connected graph has a spanning tree

Implementing Graphs

Adjacency Matrix
Suppose we have a graph G with n vertices. The adjacency matrix is the \(n \times n \) matrix \(A = [a_{ij}] \) with:

\[
 a_{ij} = 1 \text{ if } (i,j) \text{ is an edge} \\
 a_{ij} = 0 \text{ if } (i,j) \text{ is not an edge}
\]

Good for dense graphs!
Example

\[A = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix} \]

Counting Paths
The number of paths of length \(k \) from node \(i \) to node \(j \) is the entry in position \((i,j)\) in the matrix \(A^k \)

\[A^2 = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 3 & 2 & 2 & 2 \\ 2 & 3 & 2 & 2 \\ 2 & 2 & 3 & 2 \\ 2 & 2 & 2 & 3 \end{pmatrix} \]

Adjacency List
Suppose we have a graph \(G \) with \(n \) vertices. The adjacency list is the list that contains all the nodes that each node is adjacent to.

Graphical Muzak
“Can you hear the shape of a graph?”

http://www.math.ucsd.edu/~fan/hear/

Finding Optimal Trees
Trees have many nice properties (uniqueness of paths, no cycles, etc.)

We may want to compute the “best” tree approximation to a graph

If all we care about is communication, then a tree may be enough. We want a tree with smallest communication link costs
Finding Optimal Trees

Problem: Find a minimum spanning tree, that is, a tree that has a node for every node in the graph, such that the sum of the edge weights is minimum.

Tree Approximations

Kruskal's Algorithm

A simple algorithm for finding a minimum spanning tree

1. Create a forest where each node is a separate tree
2. Make a sorted list of edges S
3. While S is non-empty:
 - Remove an edge with minimal weight
 - If it connects two different trees, add the edge. Otherwise discard it.

Applying the Algorithm

Finding an MST: Kruskal's Algorithm

Analyzing the Algorithm

The algorithm outputs a spanning tree T.
Suppose that it’s not minimal. (For simplicity, assume all edge weights in graph are distinct)
Let M be a minimum spanning tree.
Let e be the first edge chosen by the algorithm that is not in M.
If we add e to M, it creates a cycle. Since this cycle isn’t fully contained in T, it has an edge f not in T.
$N = M + e - f$ is another spanning tree.
Analyzing the Algorithm

N = M + e - f is another spanning tree.

Claim: e < f, and therefore N < M

Suppose not: e > f

Then f would have been visited before e by the algorithm, but not added, because adding it would have formed a cycle.

But all of these cycle edges are also edges of M, since e was the first edge not in M. This contradicts the assumption M is a tree.

Greed is Good (In this case…)

The greedy algorithm, by adding the least costly edges in each stage, succeeds in finding an MST

But — in math and life — if pushed too far, the greedy approach can lead to bad results.

TSP: Traveling Salesman Problem

Given a number of cities and the costs of traveling from any city to any other city, what is the cheapest round-trip route that visits each city exactly once and then returns to the starting city?

TSP from Trees

We can use an MST to derive a TSP tour that is no more expensive than twice the optimal tour.

Idea: walk “around” the MST and take shortcuts if a node has already been visited.

We assume that all pairs of nodes are connected, and edge weights satisfy the triangle inequality \(d(x, y) \leq d(x, z) + d(z, y) \)

Tours from Trees

Shortcuts only decrease the cost, so

\[
\text{Cost}(\text{Greedy Tour}) \leq 2 \cdot \text{Cost(MST)} \leq 2 \cdot \text{Cost(Optimal Tour)}
\]

This is a 2-competitive algorithm

Bipartite Graph

A graph is bipartite if the nodes can be partitioned into two sets \(V_1 \) and \(V_2 \) such that all edges go only between \(V_1 \) and \(V_2 \) (no edges go from \(V_1 \) to \(V_1 \) or from \(V_2 \) to \(V_2 \)
Dancing Partners
A group of 100 boys and girls attend a dance. Every boy knows 5 girls, and every girl knows 5 boys. Can they be matched into dance partners so that each pair knows each other?

Perfect Matchings
A matching is a set of edges, no two of which share a vertex. The matching is perfect if it includes every vertex.

Theorem: If every node in a bipartite graph has the same degree $d \geq 1$, then the graph has a perfect matching.

Note: if degrees are the same then $|A| = |B|$, where A is the set of nodes “on the left” and B is the set of nodes “on the right”

A Matter of Degree

Claim: If degrees are the same then $|A| = |B|$

Proof:
If there are m boys, there are md edges
If there are n girls, there are nd edges

We'll now prove a stronger result...

The Marriage Theorem

Theorem: A bipartite graph has a perfect matching if and only if $|A| = |B| = n$ and for all $k \in [1,n]$: for any subset of k nodes of A there are at least k nodes of B that are connected to at least one of them.

For any subset of (say) k nodes of A there are at least k nodes of B that are connected to at least one of them

The condition fails for this graph
The Feeling is Mutual

At least k

At most $n-k$

The condition of the theorem still holds if we swap the roles of A and B: If we pick any k nodes in B, they are connected to at least k nodes in A.

Proof of Marriage Theorem

Call a bipartite graph “matchable” if it has the same number of nodes on left and right, and any k nodes on the left are connected to at least k on the right.

Strategy: Break up the graph into two matchable parts, and recursively partition each of these into two matchable parts, etc., until each part has only two nodes.

Proof of Marriage Theorem

Select two nodes $a \in A$ and $b \in B$ connected by an edge.

Idea: Take $G_1 = (a,b)$ and $G_2 = \text{everything else}$.

Problem: G_2 need not be matchable. There could be a set of k nodes that has only $k-1$ neighbors.

Generalized Marriage: Hall’s Theorem

Let $S = \{S_1, S_2, \ldots\}$ be a set of finite subsets that satisfies: For any subset $T = \{T_i\}$ of S, $|\cup T_i| \geq |T|$. Thus, any k subsets contain at least k elements.

Then we can choose an element x_i from each S_i so that $\{x_1, x_2, \ldots\}$ are all distinct.

Example

Suppose that a standard deck of cards is dealt into 13 piles of 4 cards each.

Then it is possible to select a card from each pile so that the 13 chosen cards contain exactly one card of each rank.
Here’s What You Need to Know...

- Adjacency matrix
- Minimum Spanning Tree
 - Definition
- Kruskal's Algorithm
 - Definition
 - Proof of Correctness
- Traveling Salesman Problem
 - Definition
 - Using MST to get an approximate solution
- The Marriage Theorem