Let me show you a machine so simple that you can understand it in less than two minutes.

The machine accepts a string if the process ends in a double circle.
The machine accepts a string if the process ends in a double circle.

Anatomy of a Deterministic Finite Automaton

States: \(q_0, q_1, q_2, q_3 \)

Start state (\(q_0 \))

Accept states (\(F \))

The alphabet of a finite automaton is the set where the symbols come from: \(\{0, 1\} \)

The language of a finite automaton is the set of strings that it accepts:

\[L(M) = \{ w | w \text{ has an even number of } 1s \} \]
Notation

An alphabet Σ is a finite set (e.g., $\Sigma = \{0,1\}$)

A string over Σ is a finite-length sequence of elements of Σ. The set of all strings over Σ is denoted by Σ^*.

For x a string, $|x|$ is the length of x

The unique string of length 0 will be denoted by ε and will be called the empty or null string

A language over Σ is a set of strings over Σ

A finite automaton is a 5-tuple $M = (Q, \Sigma, \delta, q_0, F)$

- Q is the set of states
- Σ is the alphabet
- $\delta : Q \times \Sigma \rightarrow Q$ is the transition function
- $q_0 \in Q$ is the start state
- $F \subseteq Q$ is the set of accept states

$L(M) =$ the language of machine M
$= \text{set of all strings machine } M \text{ accepts}$

$M = (Q, \Sigma, \delta, q_0, F)$
where

- $Q = \{q_0, q_1, q_2, q_3\}$
- $\Sigma = \{0,1\}$
- $q_0 \in Q$ is start state
- $F = \{q_1, q_2\} \subseteq Q$ accept states
- $\delta : Q \times \Sigma \rightarrow Q$ transition function

<table>
<thead>
<tr>
<th>δ</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_0</td>
<td>q_0</td>
<td>q_1</td>
</tr>
<tr>
<td>q_1</td>
<td>q_2</td>
<td>q_2</td>
</tr>
<tr>
<td>q_2</td>
<td>q_3</td>
<td>q_2</td>
</tr>
<tr>
<td>q_3</td>
<td>q_0</td>
<td>q_2</td>
</tr>
</tbody>
</table>

“ABA” The Automaton

<table>
<thead>
<tr>
<th>Input String</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>aba</td>
<td>Accept</td>
</tr>
<tr>
<td>aabb</td>
<td>Reject</td>
</tr>
<tr>
<td>aabba</td>
<td>Accept</td>
</tr>
<tr>
<td>ε</td>
<td>Accept</td>
</tr>
</tbody>
</table>
What machine accepts this language?

$L = \text{all strings in } \{a,b\}^* \text{ that contain at least one } a$

What is the language accepted by this machine?

$L = \text{any string ending with a } b$

What machine accepts this language?

$L = \text{strings with an odd number of } b\text{'s and any number of } a\text{'s}$

What is the language accepted by this machine?

$L(M) = \text{any string with at least two } a\text{'s}$
What machine accepts this language?

$L = \text{any string with an a and a b}$

What machine accepts this language?

$L = \text{strings with an even number of ab pairs}$

Build an automaton that accepts all and only those strings that contain 001

$\begin{array}{c}
\text{Build an automaton that accepts all and only those strings that contain 001}\\
\text{\textbf{L = all strings containing } ababb \text{ as a consecutive substring}}\\
\end{array}$

$L = \text{all strings containing } ababb \text{ as a consecutive substring}$

Invariant:

$I \text{ am state } s \text{ exactly when } s \text{ is the longest suffix of the input (so far) forming a prefix of ababb.}$
The “Grep” Problem

Input: Text T of length t, string S of length n
Problem: Does string S appear inside text T?
Naïve method:

\[
\begin{array}{c}
 a_1, a_2, a_3, a_4, a_5, \ldots, a_t
\end{array}
\]

Cost: Roughly nt comparisons

Automata Solution

Build a machine M that accepts any string with S as a consecutive substring
Feed the text to M

Cost: t comparisons + time to build M

As luck would have it, the Knuth, Morris, Pratt algorithm builds M quickly

Real-life Uses of DFAs

- Grep
- Coke Machines
- Thermostats (fridge)
- Elevators
- Train Track Switches
- Lexical Analyzers for Parsers

A language is regular if it is recognized by a deterministic finite automaton

$L = \{ w | w \text{ contains 001} \}$ is regular
$L = \{ w | w \text{ has an even number of 1s} \}$ is regular

Real-life Uses of DFAs

- Grep
- Coke Machines
- Thermostats (fridge)
- Elevators
- Train Track Switches
- Lexical Analyzers for Parsers

A language is regular if it is recognized by a deterministic finite automaton

$L = \{ w | w \text{ contains 001} \}$ is regular
$L = \{ w | w \text{ has an even number of 1s} \}$ is regular
Union Theorem

Given two languages, L_1 and L_2, define the union of L_1 and L_2 as

$$L_1 \cup L_2 = \{ w \mid w \in L_1 \text{ or } w \in L_2 \}$$

Theorem: The union of two regular languages is also a regular language.

Proof Sketch: Let

$$M_1 = (Q_1, \Sigma, \delta_1, q_0^1, F_1)$$

be finite automaton for L_1

and

$$M_2 = (Q_2, \Sigma, \delta_2, q_0^2, F_2)$$

be finite automaton for L_2

We want to construct a finite automaton

$$M = (Q, \Sigma, \delta, q_0, F)$$

that recognizes $L = L_1 \cup L_2$

Idea: Run both M_1 and M_2 at the same time!

Q = pairs of states, one from M_1 and one from M_2

$$= \{ (q_1, q_2) \mid q_1 \in Q_1 \text{ and } q_2 \in Q_2 \}$$

$$= Q_1 \times Q_2$$
Automaton for Union

Theorem: The union of two regular languages is also a regular language.

Corollary: Any finite language is regular.

Automaton for Intersection

The Regular Operations

Union: \(A \cup B = \{ w \mid w \in A \text{ or } w \in B \} \)

Intersection: \(A \cap B = \{ w \mid w \in A \text{ and } w \in B \} \)

Reverse: \(A^R = \{ w_1 \ldots w_k \mid w_k \ldots w_1 \in A \} \)

Negation: \(\neg A = \{ w \mid w \notin A \} \)

Concatenation: \(A \cdot B = \{ vw \mid v \in A \text{ and } w \in B \} \)

Star: \(A^* = \{ w_1 \ldots w_k \mid k \geq 0 \text{ and each } w_i \in A \} \)
Regular Languages Are Closed Under The Regular Operations

We have seen part of the proof for Union. The proof for intersection is very similar. The proof for negation is easy.

Consider the language $L = \{ a^n b^n \mid n > 0 \}$
i.e., a bunch of a’s followed by an equal number of b’s
No finite automaton accepts this language
Can you prove this?

Are all languages regular?

$a^n b^n$ is not regular. No machine has enough states to keep track of the number of a’s it might encounter.
That is a fairly weak argument
Consider the following example...

$L = \text{strings where the # of occurrences of the pattern } ab \text{ is equal to the number of occurrences of the pattern } ba$

Can’t be regular. No machine has enough states to keep track of the number of occurrences of ab

M accepts only the strings with an equal number of ab’s and ba’s!

Let me show you a professional strength proof that $a^n b^n$ is not regular...
Pigeonhole principle:
Given n boxes and $m > n$ objects, at least one box must contain more than one object.

Letterbox principle:
If the average number of letters per box is x, then some box will have at least x letters (similarly, some box has at most x).

Theorem: $L = \{a^nb^n \mid n > 0 \}$ is not regular

Proof (by contradiction):
Assume that L is regular.
Then there exists a machine M with k states that accepts L.
For each $0 \leq i \leq k$, let S_i be the state M is in after reading a^i.

$\exists i, j \leq k$ such that $S_i = S_j$, but $i \neq j$.

M will do the same thing on a^ib^i and a^ib^j.

But a valid M must reject a^ib^i and accept a^ib^j.

Advertisement
You can learn much more about these creatures in the FLAC course.

Formal Languages, Automata, and Computation

• There is a unique smallest automaton for any regular language.
• It can be found by a fast algorithm.

Deterministic Finite Automata
• Definition
• Testing if they accept a string
• Building automata

Regular Languages
• Definition
• Closed Under Union, Intersection, Negation
• Using Pigeonhole Principle to show language not regular.