Probability Theory: Counting in Terms of Proportions

Lecture 10, September 25, 2008

Teams A and B are equally good.
In any one game, each is equally likely to win.
What is the most likely length of a “best of 7” series?
Flip coins until either 4 heads or 4 tails.
Is this more likely to take 6 or 7 flips?
6 and 7 Are Equally Likely

To reach either one, after 5 games, it must be 3 to 2
½ chance it ends 4 to 2; ½ chance it doesn’t

Silver and Gold

One bag has two silver coins, another has two gold coins, and the third has one of each

One bag is selected at random. One coin from it is selected at random. It turns out to be gold

What is the probability that the other coin is gold?

3 choices of bag
2 ways to order bag contents
6 equally likely paths

Given that we see a gold, 2/3 of remaining paths have gold in them!
So, sometimes, probabilities can be counter-intuitive

Language of Probability

The formal language of probability is a very important tool in computer science (and science)

Finite Probability Distribution

A (finite) probability distribution p is a finite set S of elements, together with a non-negative real weight, or probability $p(x)$ for each element x in S

The weights must satisfy:

$$\sum_{x \in S} p(x) = 1$$

S is often called the sample space and elements x in S are called samples

Sample Space

The sample space has elements with weights or probabilities as follows:

- 0.1
- 0.17
- 0.11
- 0.13
- 0.2
- 0.13
- 0.06
- 0.1
- 0.1

The sum of all weights is 0.2.
Events

Any set $E \subseteq S$ is called an event

$\Pr_D[E] = \sum_{x \in E} p(x)$

$\Pr_D[E] = 0.4$

Uniform Distribution

If each element has equal probability, the distribution is said to be uniform

$\Pr_D[E] = \sum_{x \in E} p(x) = \frac{|E|}{|S|}$

Using the Language

A fair coin is tossed 100 times in a row

What is the probability that we get exactly half heads?

A fair coin is tossed 100 times in a row

What is the probability that we get exactly half heads?

The sample space S is the set of all outcomes $\{H,T\}^{100}$

Each sequence in S is equally likely, and hence has probability $1/|S|=1/2^{100}$
Visually

$S =$ all sequences of 100 tosses

$x =$ HHTTT......TH

$p(x) = 1/|S|$

Set of all 2^{100} sequences $\{H,T\}^{100}$

Event $E =$ Set of sequences with 50 H’s and 50 T’s

Probability of event $E =$ proportion of E in S

$\begin{bmatrix} 100 \\ 50 \end{bmatrix} / 2^{100}$

Suppose we roll a white die and a black die

What is the probability that sum is 7 or 11?

$\{(1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (2,1), (2,2), (2,3), (2,4), (2,5), (2,6), (3,1), (3,2), (3,3), (3,4), (3,5), (3,6), (4,1), (4,2), (4,3), (4,4), (4,5), (4,6), (5,1), (5,2), (5,3), (5,4), (5,5), (5,6), (6,1), (6,2), (6,3), (6,4), (6,5), (6,6) \}$

$\Pr[E] = |E|/|S| =$ proportion of E in $S = 8/36$

Same Methodology!

$S =$

$\begin{bmatrix} 100 \\ 50 \end{bmatrix} / 2^{100}$

$\Pr[E] = |E|/|S| =$ proportion of E in $S = 8/36$
23 people are in a room

Suppose that all possible birthdays are equally likely

What is the probability that two people will have the same birthday?

And The Same Methods Again!

Sample space \(W = \{1, 2, 3, \ldots, 366\}^{23} \)

Event \(E = \{ x \in W \mid \text{two numbers in } x \text{ are same} \} \)

What is \(|E|\) ? \(\text{Count } |\overline{E}| \text{ instead!} \)

\(\overline{E} = \text{all sequences in } S \text{ that have no repeated numbers} \)

\(|\overline{E}| = (366)(365)\ldots(344) \)

\(|W| = 366^{23} \)

\[\frac{|E|}{|W|} = 0.494\ldots \]

\[\frac{|E|}{|W|} = 0.506\ldots \]

Sons of Adam

Adam was \(X \) inches tall

He had two sons:

One was \(X+1 \) inches tall

One was \(X-1 \) inches tall

Each of his sons had two sons …
In the n^{th} generation there will be 2^n males, each with one of $n+1$ different heights:

h_0, h_1, \ldots, h_n

$h_i = (X-n+2i)$ occurs with proportion: $\binom{n}{i} / 2^n$

Unbiased Binomial Distribution On $n+1$ Elements

Let S be any set \{h_0, h_1, \ldots, h_n\} where each element h_i has an associated probability

$\frac{\binom{n}{i}}{2^n}$

Any such distribution is called an Unbiased Binomial Distribution or an Unbiased Bernoulli Distribution

More Language Of Probability

The probability of event A given event B is written $\Pr[A \mid B]$ and is defined to be:

$$\frac{\Pr[A \cap B]}{\Pr[B]}$$

Suppose we roll a white die and black die

What is the probability that the white is 1 given that the total is 7?

- event $A = \{\text{white die} = 1\}$
- event $B = \{\text{total} = 7\}$
S = \{(1,1), (1,2), (1,3), (1,4), (1,5), (1,6),
 (2,1), (2,2), (2,3), (2,4), (2,5), (2,6),
 (3,1), (3,2), (3,3), (3,4), (3,5), (3,6),
 (4,1), (4,2), (4,3), (4,4), (4,5), (4,6),
 (5,1), (5,2), (5,3), (5,4), (5,5), (5,6),
 (6,1), (6,2), (6,3), (6,4), (6,5), (6,6) \}

\[
\Pr[A \mid B] = \frac{\Pr[A \cap B]}{\Pr[B]} = \frac{|A \cap B|}{|B|} = \frac{1}{6}
\]

event A = \{white die = 1\}
evend B = \{total = 7\}

Independence!

A and B are independent events if

\[
\Pr[A \mid B] = \Pr[A]
\]

\[
\iff
\Pr[A \cap B] = \Pr[A] \Pr[B]
\]

\[
\iff
\Pr[B \mid A] = \Pr[B]
\]

Declaration of Independence

A₁, A₂, ..., Aₖ are independent events if knowing if some of them occurred does not change the probability of any of the others occurring

E.g., \{A₁, A₂, A₃\} are independent events if:

\[
\begin{align*}
\Pr[A₁ \mid A₂ \cap A₃] &= \Pr[A₁] \\
\Pr[A₂ \mid A₁ \cap A₃] &= \Pr[A₂] \\
\Pr[A₃ \mid A₁ \cap A₂] &= \Pr[A₃] \\
\Pr[A₁ \mid A₂] &= \Pr[A₁] \\
\Pr[A₁ \mid A₃] &= \Pr[A₁] \\
\Pr[A₂ \mid A₁] &= \Pr[A₂] \\
\Pr[A₂ \mid A₃] &= \Pr[A₂] \\
\Pr[A₃ \mid A₁] &= \Pr[A₃] \\
\Pr[A₃ \mid A₂] &= \Pr[A₃] \\
\end{align*}
\]

Silver and Gold

One bag has two silver coins, another has two gold coins, and the third has one of each

One bag is selected at random. One coin from it is selected at random. It turns out to be gold

What is the probability that the other coin is gold?
Let G_1 be the event that the first coin is gold
$\Pr[G_1] = \frac{1}{2}$
Let G_2 be the event that the second coin is gold
$\Pr[G_2 | G_1] = \frac{\Pr[G_1 \text{ and } G_2]}{\Pr[G_1]}$
$= \frac{1}{3} / \frac{1}{2}$
$= \frac{2}{3}$
Note: G_1 and G_2 are not independent

Monty Hall Problem
Announcer hides prize behind one of 3 doors at random
You select some door
Announcer opens one of others with no prize
You can decide to keep or switch
What to do?

Monty Hall Problem
Sample space = { prize behind door 1, prize behind door 2, prize behind door 3 }
Each has probability $\frac{1}{3}$

Staying
we win if we chose the correct door
$\Pr[\text{choosing correct door}] = \frac{1}{3}$

Switching
we win if we chose the incorrect door
$\Pr[\text{choosing incorrect door}] = \frac{2}{3}$

Why Was This Tricky?
We are inclined to think:
“After one door is opened, others are equally likely…”
But his action is not independent of yours!
Cognitive Dissonance

Monty Meets Monkeys

Experiment: Psychologists first observe that a monkey seeks out red, blue, and green M&Ms about equally.

The monkey is given a choice of red or blue candy. It chooses red.

If the monkey is then given a choice of blue or green, it is more likely to choose green.

Monty Meets Monkeys

Psychological explanation: Monkey rationalizes its initial rejection of blue by telling itself it doesn’t really like blue. (Cognitive dissonance)

Probabilistic explanation: If the monkey slightly prefers red over blue, only three ways it can rank green. It prefers green in two of the three.

Next, we’ll learn about a formidable tool in probability that will allow us to solve problems that seem really really messy...
If I randomly put 100 letters into 100 addressed envelopes, on average how many letters will end up in their correct envelopes?

Hmm…

\[\sum_k k \Pr(k \text{ letters end up in correct envelopes}) = \sum_k k \text{ (…aargh!!…)} \]

On average, in class of size \(m \), how many pairs of people will have the same birthday?

\[\sum_k k \Pr(\text{exactly } k \text{ collisions}) = \sum_k k \text{ (…aargh!!!!…)} \]

The new tool is called “Linearity of Expectation”

Random Variable

To use this new tool, we will also need to understand the concepts of Random Variable and Expectations

Basic, but need to understand it well
Random Variable

A Random Variable is a real-valued function on S

Let S be sample space in a probability distribution

Examples:
- $X =$ value of white die in a two-dice roll
 - $X(3,4) = 3,$ $X(1,6) = 1$
- $Y =$ sum of values of the two dice
 - $Y(3,4) = 7,$ $Y(1,6) = 7$
- $W =$ (value of white die)$^\text{value of black die}$
 - $W(3,4) = 3^4,$ $W(1,6) = 1^6$

Sample space

Tossing a Fair Coin n Times

$S =$ all sequences of $\{H, T\}^n$

$p =$ uniform distribution on S

$\Rightarrow p(x) = (1/2)^n$ for all x in S

Random Variables (say $n = 10$)
- $X =$ # of heads
 - $X(\text{HHHTTHTHTT}) = 5$
- $Y =$ (1 if #heads = #tails, 0 otherwise)
 - $Y(\text{HHHTTHTHTT}) = 1,$ $Y(\text{THHHHTTTTT}) = 0$

Notational Conventions

Use letters like A, B, E for events

Use letters like X, Y, f, g for R.V.’s

R.V. = random variable
Two Views of Random Variables

Think of a R.V. as
A function from S to the reals R
Or think of the induced distribution on R
Randomness is “pushed” to the values of the function

Input to the function is random

It’s a Floor Wax And a Dessert Topping

It’s a function on the sample space S
It’s a variable with a probability distribution on its values
You should be comfortable with both views

Two Coins Tossed

X: \{TT, TH, HT, HH\} \rightarrow \{0, 1, 2\} counts the number of heads

Distribution on the reals

From Random Variables to Events

For any random variable X and value a, we can define the event A that “X = a”

Pr(A) = Pr(X=a) = Pr(\{x \in S | X(x)=a\})
Two Coins Tossed

\[X: \{TT, TH, HT, HH\} \rightarrow \{0, 1, 2\} \text{ counts \# of heads} \]

\[\Pr(X = a) = \Pr(\{x \in S | X(x) = a\}) \]

\[\Pr(X = 1) = \Pr(\{x \in S | X(x) = 1\}) = \Pr(\{TH, HT\}) = \frac{1}{2} \]

From Events to Random Variables

For any event \(A \), can define the indicator random variable for \(A \):

\[X_A(x) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A \end{cases} \]

Definition: Expectation

The expectation, or expected value of a random variable \(X \) is written as \(E[X] \), and is

\[E[X] = \sum_{x \in S} \Pr(x) X(x) = \sum_k k \Pr[X = k] \]

\(X \) is a function on the sample space \(S \)

\(X \) has a distribution on its values

A Quick Calculation…

What if I flip a coin 2 times? What is the expected number of heads?

\[E[X] = \sum_{x \in S} \Pr(x) X(x) = \sum_k k \Pr[X = k] \]
A Quick Calculation…

What if I flip a coin 3 times? What is the expected number of heads?

\[
E[X] = (1/8)\times0 + (3/8)\times1 + (3/8)\times2 + (1/8)\times3 = 1.5
\]

But \(\Pr[X = 1.5] = 0 \)

Moral: don’t always expect the expected. \(\Pr[X = E[X]] \) may be 0!

Type Checking

You can average the values of a random variable.

If you are computing an expectation, the thing whose expectation you are computing is a random variable.

Adding Random Variables

If \(X \) and \(Y \) are random variables (on the same set \(S \)), then \(Z = X + Y \) is also a random variable

\[
Z(x) = X(x) + Y(x)
\]

E.g., rolling two dice. \(X = 1 \)st die, \(Y = 2 \)nd die, \(Z = \) sum of two dice.

Indicator R.V.s: \(E[X_A] = \Pr(A) \)

For any event \(A \), can define the indicator random variable for \(A \):

\[
X_A(x) = \begin{cases}
1 & \text{if } x \in A \\
0 & \text{if } x \notin A
\end{cases}
\]

\[
E[X_A] = 1 \times \Pr(X_A = 1) = \Pr(A)
\]
Adding Random Variables

Example: Consider picking a random person in the world. Let $X =$ length of the person’s left arm in inches. $Y =$ length of the person’s right arm in inches. Let $Z = X + Y$. Z measures the combined arm lengths.

Independence

Two random variables X and Y are independent if for every a, b, the events $X = a$ and $Y = b$ are independent.

How about the case of $X =$ 1st die, $Y =$ 2nd die? $X =$ left arm, $Y =$ right arm?

Linearity of Expectation

If $Z = X + Y$, then

$$E[Z] = E[X] + E[Y]$$

Even if X and Y are not independent!

$$E[Z] = \sum_{x \in S} \Pr[x] Z(x)$$

$$= \sum_{x \in S} \Pr[x] (X(x) + Y(x))$$

$$= \sum_{x \in S} \Pr[x] X(x) + \sum_{x \in S} \Pr[x] Y(x))$$

$$= E[X] + E[Y]$$
Linearity of Expectation

E.g., 2 fair flips:
- X = 1st coin is heads,
- Y = 2nd coin is heads.
- $Z = X + Y = \text{total \# heads}$

1,0,1
HT

1,1,2
HH

0,1,1
TH

0,0,0
TT

By Induction

$E[X_1 + X_2 + \ldots + X_n] = E[X_1] + E[X_2] + \ldots + E[X_n]$

The expectation of the sum = The sum of the expectations

Linearity of Expectation

E.g., 2 fair flips:
- X = at least one coin is heads
- Y = both coins are heads, $Z = X + Y$

1,0,1
HT

1,1,2
HH

1,0,1
TH

0,0,0
TT

It is finally time to show off our probability prowess…
If I randomly put 100 letters into 100 addressed envelopes, on average how many letters will end up in their correct envelopes?

Hmm…
\[\sum_k k \Pr(k \text{ letters end up in correct envelopes}) = \sum_k k \text{ (...aargh!!...)} \]

Use Linearity of Expectation

Let \(A_i \) be the event the \(i^{th} \) letter ends up in its correct envelope

Let \(X_i \) be the indicator R.V. for \(A_i \)

\[X_i = \begin{cases} 1 & \text{if } A_i \text{ occurs} \\ 0 & \text{otherwise} \end{cases} \]

Let \(Z = X_1 + \ldots + X_{100} \)

We are asking for \(E[Z] \)

\[E[X_i] = \Pr(A_i) = 1/100 \]

So \(E[Z] = 1 \)

So, in expectation, 1 letter will be in the correct envelope

Pretty neat: it doesn’t depend on how many letters!

Question: were the \(X_i \) independent?

No! E.g., think of \(n=2 \)

Use Linearity of Expectation

General approach:

View thing you care about as expected value of some RV

Write this RV as sum of simpler RVs (typically indicator RVs)

Solve for their expectations and add them up!
Example

We flip \(n \) coins of bias \(p \). What is the expected number of heads?

We could do this by summing

\[
\sum_{k} k \Pr(X = k) = \sum_{k} k \binom{n}{k} p^k (1-p)^{n-k}
\]

But now we know a better way!

What About Products?

If \(Z = XY \), then

\[
E[Z] = E[X] \times E[Y]?
\]

No!

\(X = \text{indicator for "1st flip is heads"} \)

\(Y = \text{indicator for "1st flip is tails"} \)

\[
E[XY] = 0
\]

But It’s True If RVs Are Independent

Proof:

\[
E[X] = \sum_{a} a \times \Pr(X=a)
\]

\[
E[Y] = \sum_{b} b \times \Pr(Y=b)
\]

\[
E[XY] = \sum_{c} c \times \Pr(XY = c)
\]

\[
= \sum_{c} \sum_{a,b : ab = c} c \times \Pr(X=a \cap Y=b)
\]

\[
= \sum_{a,b} ab \times \Pr(X=a \cap Y=b)
\]

\[
= \sum_{a,b} ab \times \Pr(X=a) \Pr(Y=b)
\]

\[
= E[X] E[Y]
\]

Linearity of Expectation!

Let \(X = \) number of heads when \(n \) independent coins of bias \(p \) are flipped

Break \(X \) into \(n \) simpler RVs:

\[
X_i = \begin{cases}
1 & \text{if the } j^{th} \text{ coin is tails} \\
0 & \text{if the } j^{th} \text{ coin is heads}
\end{cases}
\]

\[
E[X] = E[\sum_i X_i] = np
\]
Example: 2 fair flips
X = indicator for 1st coin heads
Y = indicator for 2nd coin heads
XY = indicator for “both are heads”

E[X] = ½, E[Y] = ½, E[XY] = ¼

E[X^2] = E[X]^2?

No: E[X^2] = ½, E[X]^2 = ¼

In fact, E[X^2] – E[X]^2 is called the variance of X

On average, in class of size m, how many pairs of people will have the same birthday?

Σ_k k Pr(exactly k collisions)

= Σ_k k (…aargh!!!!…)

Most of the time, though, power will come from using sums

Mostly because Linearity of Expectations holds even if RVs are not independent

Use linearity of expectation

Suppose we have m people each with a uniformly chosen birthday from 1 to 366

X = number of pairs of people with the same birthday

E[X] = ?
X = number of pairs of people with the same birthday

E[X] = ?

Use m(m-1)/2 indicator variables, one for each pair of people

X_{jk} = 1 if person j and person k have the same birthday; else 0

E[X_{jk}] = (1/366) 1 + (1 – 1/366) 0
= 1/366

E[X] = E[\sum_{j \leq k \leq m} X_{jk}]
= \sum_{j \leq k \leq m} E[X_{jk}]
= m(m-1)/2 \times 1/366

Language of Probability
Sample Space
Events
Uniform Distribution
Pr [A | B]
Independence
Binomial Distribution
Definition
Random Variables
Two views
Expectation
Linearity of expectation

Here’s What You Need to Know…