15-251
Great Theoretical Ideas in Computer Science
Counting III
Lecture 8 (September 20, 2007)

\[X^1 + 2X^2 + 3X^3 \]
Arrange \(n \) symbols: \(r_1 \) of type 1, \(r_2 \) of type 2, ..., \(r_k \) of type \(k \)

\[
\binom{n}{r_1} \binom{n-r_1}{r_2} \cdots \binom{n-r_1-r_2-\cdots-r_{k-1}}{r_k}
\]

\[
= \frac{n!}{(n-r_1)!r_1!} \frac{(n-r_1)!}{(n-r_1-r_2)!r_2!} \cdots
\]

\[
= \frac{n!}{r_1!r_2! \cdots r_k!}
\]
\[\frac{14!}{2!3!2!} = 3,632,428,800 \]
5 distinct pirates want to divide 20 identical, indivisible bars of gold. How many different ways can they divide up the loot?
How many different ways to divide up the loot?

Sequences with 20 G’s and 4 /’s

\[
\binom{24}{4}
\]
How many different ways can \(n \) distinct pirates divide \(k \) identical, indivisible bars of gold?

\[
\binom{n + k - 1}{n - 1} = \binom{n + k - 1}{k}
\]
How many integer solutions to the following equations?

\[x_1 + x_2 + x_3 + \ldots + x_n = k \]
\[x_1, x_2, x_3, \ldots, x_n \geq 0 \]

\[\binom{n+k-1}{n-1} = \binom{n+k-1}{k} \]
Identical/Distinct Dice

Suppose that we roll seven dice

How many different outcomes are there, if order matters?

What if order doesn’t matter? (E.g., Yahtzee)

(Corresponds to 6 pirates and 7 bars of gold)
Identical/Distinct Objects

If we are putting k objects into n distinct bins.

<table>
<thead>
<tr>
<th>Objects are distinguishable</th>
<th>n^k</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objects are indistinguishable</td>
<td>$\binom{k+n-1}{k}$</td>
</tr>
</tbody>
</table>
The Binomial Formula

$$(1+X)^n = \sum_{k=0}^{n} \binom{n}{k} X^k$$

Binomial Coefficients
What is the coefficient of \((X_1^{r_1}X_2^{r_2}...X_k^{r_k})\) in the expansion of
\((X_1+X_2+X_3+...+X_k)^n\)?

\[
\frac{n!}{r_1!r_2!...r_k!}
\]
Power Series Representation

\[(1+X)^n = \sum_{k=0}^{\infty} \binom{n}{k} X^k\]

For \(k > n \),
\[\binom{n}{k} = 0\]

“Product form” or “Generating form”

“Power Series” or “Taylor Series” Expansion
By playing these two representations against each other we obtain a new representation of a previous insight:

\[(1+X)^n = \sum_{k=0}^{n} \binom{n}{k} X^k\]

Let \(x = 1\), then \(2^n = \sum_{k=0}^{n} \binom{n}{k}\)

The number of subsets of an n-element set
By varying x, we can discover new identities:

$$(1+X)^n = \sum_{k=0}^{n} \binom{n}{k} X^k$$

Let $x = -1$, then

$$0 = \sum_{k=0}^{n} \binom{n}{k} (-1)^k$$

Equivalently,

$$\sum_{k \text{ odd}}^{n} \binom{n}{k} = \sum_{k \text{ even}}^{n} \binom{n}{k}$$
The number of subsets with even size is the same as the number of subsets with odd size.
Proofs that work by manipulating algebraic forms are called “algebraic” arguments. Proofs that build a bijection are called “combinatorial” arguments.

\[(1+X)^n = \sum_{k=0}^{n} \binom{n}{k} X^k\]
Let O_n be the set of binary strings of length n with an odd number of ones.

Let E_n be the set of binary strings of length n with an even number of ones.

We just saw an algebraic proof that $|O_n| = |E_n|$.

\[
\sum_{k \text{ odd}}^{n} \binom{n}{k} = \sum_{k \text{ even}}^{n} \binom{n}{k}
\]
A Combinatorial Proof

Let O_n be the set of binary strings of length n with an odd number of ones.

Let E_n be the set of binary strings of length n with an even number of ones.

A combinatorial proof must construct a bijection between O_n and E_n.
An Attempt at a Bijection

Let f_n be the function that takes an n-bit string and flips all its bits.

f_n is clearly a one-to-one and onto function.

For odd n. E.g. in f_7 we have:

- $0010011 \rightarrow 1101100$
- $1001101 \rightarrow 0110010$

...but do even n work? In f_6 we have:

- $110011 \rightarrow 001100$
- $101010 \rightarrow 010101$

Uh oh. Complementing maps evens to evens!
A Correspondence That Works for all n

Let f_n be the function that takes an n-bit string and flips only the first bit. For example,

0010011 \rightarrow 1010011
1001101 \rightarrow 0001101

110011 \rightarrow 010011
101010 \rightarrow 001010
The binomial coefficients have so many representations that many fundamental mathematical identities emerge...

\[(1+X)^n = \sum_{k=0}^{n} \binom{n}{k} X^k\]
\(\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1} \)

- Set of all \(k \)-subsets of \{1..n\}

- Either we **do not** pick \(n \): then we have to pick \(k \) elements out of the remaining \(n-1 \).

- Or we **do** pick \(n \): then we have to pick \(k-1 \) elts. out of the remaining \(n-1 \).
The Binomial Formula

\[(1+X)^0 = 1\]
\[(1+X)^1 = 1 + 1X\]
\[(1+X)^2 = 1 + 2X + 1X^2\]
\[(1+X)^3 = 1 + 3X + 3X^2 + 1X^3\]
\[(1+X)^4 = 1 + 4X + 6X^2 + 4X^3 + 1X^4\]

Pascal’s Triangle: \(k\)th row are coefficients of \((1+X)^k\)

Inductive definition of \(k\)th entry of \(n\)th row:
\[\text{Pascal}(n,0) = \text{Pascal}(n,n) = 1;\]
\[\text{Pascal}(n,k) = \text{Pascal}(n-1,k-1) + \text{Pascal}(n-1,k)\]
“Pascal’s Triangle”

\[
\begin{align*}
\binom{0}{0} &= 1 \\
\binom{1}{0} &= 1 & \binom{1}{1} &= 1 \\
\binom{2}{0} &= 1 & \binom{2}{1} &= 2 & \binom{2}{2} &= 1 \\
\binom{3}{0} &= 1 & \binom{3}{1} &= 3 & \binom{3}{2} &= 3 & \binom{3}{3} &= 1
\end{align*}
\]

• Al-Karaji, Baghdad 953-1029
• Chu Shin-Chieh 1303
• Blaise Pascal 1654
Pascal’s Triangle

“It is extraordinary how fertile in properties the triangle is. Everyone can try his hand”
Summing the Rows

\[2^n = \sum_{k=0}^{n} \binom{n}{k} \]

\[
\begin{array}{c}
1 + 1 \\
1 + 2 + 1 \\
1 + 3 + 3 + 1 \\
1 + 4 + 6 + 4 + 1 \\
1 + 5 + 10 + 10 + 5 + 1 \\
1 + 6 + 15 + 20 + 15 + 6 + 1
\end{array}
\]

= 1
= 2
= 4
= 8
= 16
= 32
= 64
Odds and Evens

\[
\begin{array}{ccccccc}
1 & & & & & & 1 \\
1 & 1 & & & & & 1 \\
1 & 2 & 1 & & & & 2 \\
1 & 3 & 3 & 1 & & & 4 \\
1 & 4 & 6 & 4 & 1 & & 8 \\
1 & 5 & 10 & 10 & 5 & 1 & 16 \\
1 & 6 & 15 & 20 & 15 & 6 & 1 \\
1 + 15 + 15 + 1 = 6 + 20 + 6
\end{array}
\]
Summing on 1st Avenue

\[\sum_{i=1}^{n} i = \sum_{i=1}^{n} \binom{i}{1} = \binom{n+1}{2} \]
Summing on k^{th} Avenue

$$\sum_{i=k}^{n} \binom{i}{k} = \binom{n+1}{k+1}$$
Fibonacci Numbers

1 = 1
1 = 1
2 = 1 + 1
3 = 2 + 1
5 = 3 + 2
8 = 5 + 3
13 = 8 + 5
Sums of Squares

1

1

1

1 1 1

1 2 2 1

1 2 3 2

1 2 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1
Al-Karaji Squares

\[
\begin{array}{cccccc}
1 & 1 & 1 & & & = 1 \\
1 & 2 & +2 & & & = 4 \\
1 & 3 & +2 & & & = 9 \\
1 & 4 & +2 & & & = 16 \\
1 & 5 & +2 & & & = 25 \\
1 & 6 & +2 & & & = 36 \\
\end{array}
\]
Pascal Mod 2
All these properties can be proved inductively and algebraically. We will give combinatorial proofs using the Manhattan block walking representation of binomial coefficients.
How many shortest routes from A to B?
There are $\binom{j+k}{k}$ shortest routes from (0,0) to (j,k)
There are $\binom{n}{k}$ shortest routes from $(0,0)$ to $(n-k,k)$.
There are \(\binom{n}{k} \) shortest routes from (0,0) to level n and k^{th} avenue.
\[
\begin{pmatrix}
\binom{n}{k}
\end{pmatrix} = \begin{pmatrix}
\binom{n-1}{k-1}
\end{pmatrix} + \begin{pmatrix}
\binom{n-1}{k}
\end{pmatrix}
\]
$$\sum_{k=0}^{n} \binom{n}{k}^2 = \binom{2n}{n}$$
Vector Programs

Let’s define a (parallel) programming language called VECTOR that operates on possibly infinite vectors of numbers. Each variable $V \rightarrow$ can be thought of as:

$$< *, *, *, *, *, *, *, *, ... >$$
Vector Programs

Let k stand for a scalar constant

\(<k>\) will stand for the vector \(<k,0,0,0,\ldots>\>

\(<0> = <0,0,0,0,\ldots>\>
\(<1> = <1,0,0,0,\ldots>\>

\(\mathbf{V} + \mathbf{T}\) means to add the vectors position-wise

\(<4,2,3,\ldots> + <5,1,1,\ldots> = <9,3,4,\ldots>\>
Vector Programs

\textbf{RIGHT}(V\rightarrow) \text{ means to shift every number in } V\rightarrow \text{ one position to the right and to place a 0 in position 0}

\textbf{RIGHT}(<1,2,3, \ldots>) = <0,1,2,3,\ldots>
Vector Programs

Example:

\[V\rightarrow := \langle 6 \rangle; \]
\[V\rightarrow := \text{RIGHT}(V\rightarrow) + \langle 42 \rangle; \]
\[V\rightarrow := \text{RIGHT}(V\rightarrow) + \langle 2 \rangle; \]
\[V\rightarrow := \text{RIGHT}(V\rightarrow) + \langle 13 \rangle; \]

Store:

\[V\rightarrow = \langle 6, 0, 0, 0, \ldots \rangle \]
\[V\rightarrow = \langle 42, 6, 0, 0, \ldots \rangle \]
\[V\rightarrow = \langle 2, 42, 6, 0, \ldots \rangle \]
\[V\rightarrow = \langle 13, 2, 42, 6, \ldots \rangle \]

\[V\rightarrow = \langle 13, 2, 42, 6, 0, 0, 0, \ldots \rangle \]
Vector Programs

Example:
\[V \rightarrow := <1> \];
Loop n times
\[V \rightarrow := V \rightarrow + \text{RIGHT}(V \rightarrow) \];
\[V \rightarrow = n^{th} \text{ row of Pascal’s triangle} \]

Store:
\[V \rightarrow = <1,0,0,0,\ldots> \]
\[V \rightarrow = <1,1,0,0,\ldots> \]
\[V \rightarrow = <1,2,1,0,\ldots> \]
\[V \rightarrow = <1,3,3,1,\ldots> \]
Vector programs can be implemented by polynomials!
Programs \rightarrow Polynomials

The vector $V = \langle a_0, a_1, a_2, \ldots \rangle$ will be represented by the polynomial:

$$P_V = \sum_{i=0}^{\infty} a_i X^i$$
Formal Power Series

The vector $\mathbf{V} = < a_0, a_1, a_2, \ldots >$ will be represented by the **formal power series**:

$$ P_V = \sum_{i=0}^{\infty} a_i X^i $$
\[V \rightarrow = \langle a_0, a_1, a_2, \ldots \rangle \]

\[P_V = \sum_{i=0}^{\infty} a_i X_i \]

\[\langle 0 \rangle \text{ is represented by } 0 \]

\[\langle k \rangle \text{ is represented by } k \]

\[V \rightarrow + T \rightarrow \text{ is represented by } (P_V + P_T) \]

\[\text{RIGHT}(V \rightarrow) \text{ is represented by } (P_V X) \]
Vector Programs

Example:

\[V \rightarrow := <1> ; \]
\[P_V := 1 ; \]

Loop n times

\[V \rightarrow := V \rightarrow + \text{RIGHT}(V!); \]
\[P_V := P_V + P_V X; \]

\[V \rightarrow = \text{n}^{\text{th}} \text{ row of Pascal’s triangle} \]
Vector Programs

Example:

\[V \rightarrow := \langle 1 \rangle; \]

Loop \(n \) times

\[V \rightarrow := V \rightarrow + \text{RIGHT}(V!); \]

\[V \rightarrow = n^{\text{th}} \text{ row of Pascal’s triangle} \]

\[P_V := 1; \]

\[P_V := P_V(1+X); \]
Vector Programs

Example:

\(V \rightarrow := <1>; \)

Loop n times

\(V \rightarrow := V \rightarrow + \text{RIGHT}(V!); \)

\[P_V = (1 + X)^n \]

\(V \rightarrow = n^{th} \text{ row of Pascal’s triangle} \)
Here’s What You Need to Know...

• Polynomials count
• Binomial formula
• Combinatorial proofs of binomial identities
• Vector programs