
Large Neighborhood Search
For Dial-a-Ride Problems

Siddhartha Jain and Pascal Van Hentenryck

Brown University, Department of Computer Science
Box 1910, Providence, RI 02912, U.S.A.
{sj10,pvh}@cs.brown.edu

Abstract. Dial-a-Ride problems (DARPs) arise in many urban transportation ap-
plications. The core of a DARP is a pick and delivery routing with multiple vehi-
cles in which customers have ride-time constraints and routes have a maximum
duration. This paper considers DARPs for which the objective is to minimize
the routing cost, a complex optimization problem which has been studied exten-
sively in the past. State-of-the-art approaches include sophisticated tabu search
and variable neighborhood search. This paper presented a simple constraint-based
large neighborhood search, which uses constraint programming repeatedly to find
good reinsertions for randomly selected sets of customers. Experimental evi-
dence shows that the approach is competitive in finding best-known solutions
and reaches high-quality solutions significantly faster than the state of the art.

1 Introduction

The Dial-a-Ride Problem (DARP) is a variant of the Pickup and Delivery Problem
(PDP), frequently arising in door-to-door transportation services for elderly and dis-
abled people or in services for patients. In recent years, dial-a-ride services have been
steadily increasing in response to popular demand. [8]. A DARP consists of n customers
who want to be transported from an origin to a destination. Requests can be classified
as outbound (say from home to the hospital) or inbound (from hospital back to the
home). DARPs can be rather diverse and there is no standard formulation in literature.
Various formulations try to balance the cost of the route and user inconvenience via
soft and hard constraints. One formulation minimizes the weighted sum of total routing
cost, time-window violations, and the number of vehicles used [1]. Another has multi-
ple depots, a heterogeneous fleet, service times, time windows, and maximum customer
ride times [13]. Yet another minimizes the weighted sum of the customer transportation
times, the excess customer ride time with respect to direct and maximum ride time,
time-window violations, customer waiting time and excess work time [10]. A survey of
various DARP models and the algorithms used to solve them is given in [8].

This paper studies the formulation of Cordeau et al. [7] defined in terms of a fixed
number m of vehicles, which makes sense in practice. There is only one depot. There
are time-window constraints on the pickup or delivery vertex depending on whether the
request is inbound or outbound. We also have service times, maximum ride time, and
maximum route duration constraints. The objective is to minimize the total routing cost,



i.e., the travel distance. A tabu-search procedure to solve the static version of the prob-
lem where the requests are known in advance was presented by Cordeau et al [7] while a
Variable Neighborhood Search procedure was proposed recently by Parragh et al. [11].
A procedure for testing the satisfiability of an instance was given by Berbeglia et al. [5].
A procedure for testing the satisfiability for the dynamic version of the problem, where
only a subset of requests is known in advance, was presented in [4]. In general, one
is interested in finding high-quality solutions to DARPs since, as the name indicates,
customers call for a service.

This paper presents a large neighborhood search for DARPs and makes the follow-
ing contributions:

1. It proposes a large neighborhood search LNS-FFPA (FFPA will be defined in Sec-
tion 6) which significantly outperforms the traditional LNS algorithm used in vehi-
cle routing (e.g., [12, 3, 2]).

2. It shows that LNS-FFPA significantly improves the quality of the routings found
under tight time constraints compared to the state-of-the-art variable neighborhood
search and tabu-search algorithms.

3. It shows that LNS-FFPA compares very well with the state-of-the-art constraint-
programming approach to find feasible solutions to DARPs.

From a technical standpoint, LNS-FFPA features two novelties. First, it does not im-
pose that the neighborhood search must find an improving solution. Second, LNS-FFPA
terminates the neighborhood search after finding a feasible solution. This solution is ac-
cepted using a Probabilistic criterion, which allows worse solutions to be accepted for
subsequent iterations. As mentioned earlier, the diversification resulting from these two
design decisions is key in finding high-quality solutions under time constraints. It is also
important to emphasize that LNS-FFPA, which is a very generic search technique, im-
proves solution quality under very tight constraints over highly dedicated local search
implementations. This makes it ideal for the highly dynamic environments in which
DARPs arise.

The rest of the paper is organized as follows. We first present the problem formula-
tion and give an overview of the state-of-the-art. This review should give readers a sense
of the sophistication of the existing approaches. We then present our large neighborhood
algorithm LNS-FFPA, report the experimental results, and conclude the paper.

2 Formulation

The input to DARP consists of the numberm of vehicles, n requests, the maximum ride
time L for customers, the maximum route duration D, and the planning time horizon
T , i.e., the hours between which the vehicles can operate. A DARP is defined on a
complete graph G = (V,E) where V = {v0, v1, . . . , v2n} is the set of vertices and
E = {(vi, vj) : vi, vj ∈ V, i 6= j} is the set of edges. Vertex v0 denotes the depot.
Each request i (1 ≤ i ≤ n) consists of a pair of vertices (vi, vi+n). With each vertex vj
is associated a service duration dj ≥ 0 , a load qj and a time window [ej , lj ]. We also
have d0 = 0, q0 = 0, and e0 = 0, l0 = T . Service duration is the time needed to service
a vertex. Requests are either inbound or outbound. If i is an outbound request, then



the pickup vertex vi has the time window [0, T ] and is called non-critical, whereas the
delivery vertex is called critical. If i is an inbound request, then the delivery vertex vi+n

has time window [0, T ] and is non-critical whereas the pickup vertex is critical. The
matrix ti,j also denotes the distance between vertices i and j. Given these definitions,
a DARP consists in finding a route for each of the m vehicles such that (1) the route
begins and ends at the depot; (2) The load of a vehicle k never exceeds its capacity
Qk; (3) The total duration (i.e., the difference between the end time and the start time)
never exceeds a preset bound Tk; (4) For each request i, vi and vi+n are serviced by
the same vehicle and vi+n is visited after vi; (5) The ride time of any customer (i.e., the
difference between the serving time at the delivery vertex and the departure time at the
pickup vertex) does not exceed L; (6) For each vertex vi, the starting time of its service
lies between [ei, li]; and (7) The total routing cost of all vehicles is minimized. In our
formulation as in [7], the total routing cost is equal to the total distance traveled by the
vehicles.

3 A Constraint Programming Approach

Berbeglia et al [5] use a Constraint Programming (CP) approach for the DARP formula-
tion in [7], except they do not model the route duration constraint and do not attempt to
minimize the routing cost. Their focus is to check the satisfiability of DARP instances.

The Model Each vertex vi has a successor variable s[i] and there is an AllDifferent con-
straint on all successor variables. The precedence, time window, ride time, and maxi-
mum vehicle capacity constraints are modeled via auxiliary variables representing the
load, serving vehicle, and serving time for each vertex. The routes are constructed by
branching on the successor variables.

Variable Selection Let S be the set of all successor variables with the smallest domains.
For every value v in the domain of some variable in S, the CP algorithm computes v#,
the number of times that value appears in the domain of some variable in S. Denote by
S′ the set of all variables in S for which the sum

∑
v∈domain(Si)

v# is maximized. The
CP algorithm randomly select a variable from S′.

Value Selection Let s be the chosen variable. The partial route of s is defined as the
sequence of vertices vi, vi+1, . . . , vj such that the successor s[vk] of vk is vk+1 and
vj = s. The value-selection heuristic considers the following vertices in sequence:

1. a delivery vertex whose corresponding pickup vertex is in the partial route of s;
2. a pickup vertex randomly selected from the domain of s;
3. a delivery or a depot vertex.

Filtering Algorithms Berbeglia et al. [5] developed two dedicated filtering algorithms
for DARPs. The first filtering algorithm is based on solving exactly the Pickup and
Delivery Problem with Fixed Partial Routes (PDP-FPR), a relaxed version of the DARP.
The PDP-FPR takes into account the precedence and the capacity constraints and is



strongly NP-complete [6]. The authors proposed a dynamic-programming algorithm to
solve it exactly and use that to develop a filtering algorithm for PDP-FPR.

The second filtering algorithm is a partial filtering algorithm for the basic DARP
with Ride Time Constraint problem, also a relaxation of the original problem with only
the ride time constraint which is NP-complete [6]. For every unassigned successor vari-
able s, the algorithm examines every pickup vertex p in the partial route of s and cal-
culates a lower bound on the minimum time needed to get from p to the corresponding
delivery vertex d. If this bound exceeds the maximum ride time, then some values from
the domain of s can be removed. A similar procedure is executed for the delivery ver-
tices in the partial routes of the vertices in the domain of s. The filtering algorithms are
too complex to be described given space constraints but readers can consult [5] for the
full details.

4 A Tabu Search Approach

A Tabu-Search approach was developed by Cordeau et al. [7]. The algorithm starts with
a random initial solution s0 and, at every iteration t, moves from solution st to a solu-
tion in its neighborhood. To prevent cycling, certain attributes of previous solutions are
declared tabu unless those attributes form part of a new best solution. A diversification
mechanism is in place to reduce the likelihood of being trapped in a local minimum. In
addition, every κ iterations, every request is sequentially removed from its current route
and inserted in the best possible location. Some important aspects of the algorithm are
briefly described 1below.

Relaxation Mechanism One of the key features of the tabu-search algorithm is that it
allows the exploration of infeasible solutions. The time window, ride time, capacity, and
route duration constraints are relaxed and their violation is penalized in the objective.
The objective is defined as f(s) = c(s) + αq(s) + βd(s) + γw(s) + τt(s) where
α, β, γ, τ are self-adjusting positive parameters, c(s) is the routing cost, q(s) the load
violation, d(s) the route duration violation, w(s) the time window violation, and t(s)
the ride-time violation. The search tries to minimize the routing cost and the violations
simultaneously to get good solutions that satisfy all the constraints.

Neighborhood The neighborhood of a solution consists of moving a request i from
a route r to a route r′. In such a case, the attribute (i, r) is put in the tabu list. If an
attribute (i, r′) is in the tabu list, then the request i cannot be moved to route r′. As a
form of aspiration, if moving request i to route r′ would result in a smaller cost than the
best known solution which has request i in route r′, then the tabu status of the attribute
(i, r′) is revoked.

Penalty Adjustment The penalties for the violations are adjusted dynamically through
the course of the search. At every iteration, if a constraint is being violated in the current
solution, the penalty for that constraint is multiplied by a factor (1 + δ) (δ > 0). If on
the other hand, the constraint is not violated, the penalty is divided by the same factor.
If a penalty reaches a fixed upper bound, then it is reset to 1.1

1 This particular aspect is not mentioned in [7] but was learned through personal communication.



Neighborhood Evaluation Cordeau et al. [7] uses three different schemes for choosing
where to insert a request on a route. The simplest one only minimizes the time-window
violations. The second does the same and also minimizes the route duration violations
without increasing the ride-time violations. Both are linear time algorithms. The third
evaluation procedure minimizes first the time-window violations, then the route dura-
tion violations and then the ride-time violations without increasing the time window
or route duration violations. It is a quadratic time procedure. To reduce the size of the
neighborhood, the algorithm first looks for the best insertion place for the critical ver-
tex (ride-time violations are ignored in this step) and then the best insertion place for
the non-critical vertex, while keeping the critical vertex in its best insertion place. In
particular, different insertion places for the critical vertex are not considered.

5 A Variable Neighborhood Approach

A Variable Neighborhood Search (VNS) procedure for the DARP was proposed by [11].
The search starts with an initial solution s0 generated by taking into account the spatial
and temporal closeness of vertices. Then, at every iteration t with solution st, a random
solution s′ is generated in the neighborhood Nk(st) in a step called shaking. Here k
indicates which neighborhood is being used. The heuristic uses three different types
of neighborhoods with multiple neighborhood sizes for a total of 13 different neighbor-
hoods. Following that, a local search step is applied to s′ to get solution s′′. A simulated
annealing type criterion is used to decide whether s′′ replaces st and become the new
incumbent solution. If st is not replaced, the next (larger) neighborhood is tried. Oth-
erwise, s′′ replaces st and the search begins with the first neighborhood, i.e., k is reset
to 1. If k reaches 13, the maximum number of neighborhoods, it is also reset to 1. In-
feasible solutions are also permitted in this framework and they are incorporated into
the objective as in [7]. The neighborhood evaluation is also the same. Their results are
competitive with the results obtained by [7]. A few other important aspects of the solver
are highlighted below.

Neighborhood Structure Three different types of neighborhoods are employed. In the
swap neighborhood, two sequences of requests are chosen from two randomly selected
routes. Those requests are then ejected from their current route and inserted in the
other selected route in the best possible position. The chain neighborhood applies the
ejection chain idea [9]. First two routes are randomly chosen and a sequence of re-
quests is ejected from the first route and inserted in the best possible way in the second
route. Then a sequence of requests which would decrease the evaluation function value
of that route the most is ejected from the second route and moved to a third route (which
may even be the first route). This last step is repeated a fixed number of times. The size
of the sequences is also fixed. The third type of neighborhood is the zero-split neighbor-
hood which is parameterless. Define a natural sequence to be one where the load at the
beginning and end of the sequence is zero. Then the neighborhood is based on the idea
that quite often multiple such natural sequences exist in routes. Thus a random number
of such natural sequences are ejected from a route. Each of them is then inserted inde-
pendently in a random route at their best insertion point. By varying the parameters of



the first two neighborhoods, along with the zero-split neighborhood, a sequence of 13
different neighborhoods is obtained.

Local Search After the shaking step, a local search step is applied. Requests are sequen-
tially removed from their current position and inserted in the first position that would
improve the route’s evaluation function value. If no such position exists for a request,
then the request is kept at its original place. Since this procedure is time-consuming, it is
only called if the solution after the shaking step is considered a promising solution, i.e.,
a solution that has a good possibility of becoming the new incumbent solution. Further
details are in [11].

6 The LNS-FFPA Algorithm

The large neighborhood search algorithm (LNS-FFPA) is the main contribution of the
paper. LNS-FFPA, where FFPA stands for First Feasible Probabilistic Acceptance, is
inspired by the LNS algorithm described in [12, 2, 3] to minimize the travel distance
for vehicle routing problems in [12] and pickup and delivery problems in [2]. How-
ever, LNS-FFPA contains some novel design decisions which are key to obtaining high-
quality solutions on DARPs.

The Model Each vertex vi has a successor variable si. The routes are constructed by
inserting a non-scheduled request ri with pickup vertex vi and delivery vertex vj in
the route. The pickup vertex is inserted in between two other vertices vp and vs which
are parts of a route and similarly for the delivery vertex. In other words, each branch-
ing decision in LNS-FFPA corresponds to the insertion of a request in a route. Every
time LNS-FFPA branches, it adds the following constraints for both the pickup and the
delivery vertex of the request

bi ≥ bp + dp + tp,i

bs ≥ bi + di + ti,s

where bi is the serving time of the pickup or delivery vertex in question, di is the serving
duration of a vertex and ti,j is the distance between two vertices as specified in Section
2. These constraints are removed upon backtracking.

The Feasibility Search At a high level, LNS-FFPA is a constraint-programming search
to find a feasible solution to DARPs, coupled with a large neighborhood algorithm to
minimize travel distance. Algorithm 1 describes the algorithm for finding feasible so-
lutions. The algorithm receives a partial solution, i.e., a set of partial routes for the ve-
hicles. As long as there are unassigned customers, the algorithm selects such a request
r (line 3). It then considers all its possible insertion points (line 4) and calls the algo-
rithm recursively for each such insertion point p (line 6–8). If the recursive call finds
a feasible solution, the algorithm returns. Otherwise, it removes the request and tries
the remaining insertion points. Note that the insertion points are explored in increasing
order of e(r, p) which is defined as (α and β are positive constants)

α · costIncrease(r, p)− β · slackAfterInsertion(r, p)



Algorithm 1 Tree-Search(PartialSolution)
1: if no unassigned requests left then
2: return PartialSolution
3: r ← GetUnassignedRequest()
4: for all feasible insertion points p for r in increasing order of e(r, p) do
5: Insert r at point p in the PartialSolution
6: ret = Tree-Search(PartialSolution)
7: if ret is a solution then
8: Return ret {Feasible solution found in sub-branch}
9: Remove r from PartialSolution

10: return False {No feasible solution found for this sub-branch}
The Algorithm for Finding a Feasible Solution Given a Partial Solution.

Algorithm 2 GetUnassignedRequest()
1: S1 ← {r : r is an unassigned request and the number of routes in which r can be inserted is

minimized}.
2: S2 ← {r : r ∈ S1 and the number of insertion points for r is minimized}.
3: S3 ← {r : r ∈ S2 and the best insertion point for r increases e(r, p) by the least amount}.
4: return a randomly chosen element from S3.

Request Selection Heuristic

where costIncrease(r, p) denotes the increase in routing cost produced by inserting
request r at insertion point p and slackAfterInsertion(r, p) denotes the gap between
the serving times of the pickup and delivery vertices and their successors and predeces-
sors after the insertion. The gap for a vertex vi is given by

servingTime[succ(vi)]−servingTime[vi]+servingTime[vi]−servingTime[pred(vi)]

and the gap for the pickup and delivery vertices is the sum of the gaps of the individual
vertices. In other words, the insertion points are chosen to minimize the increase in the
routing cost and maximize the available slack.

Algorithm 2 specifies which requests are inserted first, i.e., how line 3 in Algo-
rithm 1 is implemented. It selects a request which can be inserted in the fewest vehicles
(set S1), which has the fewest insertion points (set S2), and whose best insertion point
produces the smallest amount in objective value.

Algorithm 1 is used both for finding an initial solution and for reinserting vertices
during the large neighborhood search. In [12, 2, 3], the corresponding algorithm uses
Limited Discrepancy Search (LDS) and limits the number of feasible insertion points
explored at every search node. Moreover, such a neighborhood search is constrained
to produce only improving solutions. In contrast, no such restrictions are imposed on
Algorithm 1: It is a pure depth-first search algorithm, exploring all potential insertion
points and returning the first feasible solution extending the input partial configuration.

For some instances with high (number of requests/number of vehicle) ratios, restarts
improve performance: Algorithm 1 restarts after max(γ ·m, τ) failures where γ and τ
are positive constants. This is only used for finding an initial feasible solution.



Algorithm 3 MinimizeRoutingCost(s,maxSize, range, numIter, timeLimit, d)
1:
2: best← s
3: current← s
4: for i← 2; i ≤maxSize-range; i← i+ 1 do
5: for j ← 0; j ≤range; j ← j + 1 do
6: for k ← 0; k ≤numIter; k ← k + 1 do
7: RelaxedSolution← Randomly select i+ j requests and
8: remove them from current
9: new ← Tree-Search(RelaxedSolution)

10: pr ← random number between 0 and 1
11: if f(new) < f(current) OR pr < d then
12: current = new
13: if f(current) < f(best) then
14: best = current
15: if timeLimit reached then
16: return best
17: return best

The LNS-FFPA Algorithm for DARPs.

The Large Neighborhood Search Algorithm 3 describes the LNS-FFPA algorithm to
minimize the routing cost. It takes as input an initial feasible solution s and an up-
per bound on the number of requests that can be relaxed maxSize. To explore smaller
neighborhoods first, LNS-FFPA uses a parameter range to increase the neighborhood
size progressively. Finally, the procedure receives as inputs the number of iterations per
neighborhood (t), the time limit for running the algorithm (timeLimit) and the proba-
bility d of accepting a worse solution. In addition, the function f used in the procedure
returns the routing cost of a solution. The current solution is first initialized to the initial
solution passed in to the procedure (line 3). Then the neighborhood is explored as given
in lines 4-6. The number of requests that can be relaxed is steadily increased (line 4).
Once it reaches the upper bound, it is effectively reset to 1. For a particular neighbor-
hood size, a small range of neighborhoods starting from that size are explored (line 5).
Every neighborhood size in that range is explored for numIter iterations (line 6). The
number of requests equal to the neighborhood size are relaxed (line 7). The requests to
relax are chosen at random. More sophisticated methods to select the requests to relax
including the one used in [12, 2, 3] were tried but the random heuristic was significantly
better for DARPs. Our conjecture is that the side constraints in DARPs, in particular
the ride time, make it much harder to select a set of spatially related requests that could
lead to a better solution than for more traditional VRPs without the ride constraint [12,
2, 3]. The search then attempts to complete the relaxed solution by calling Algorithm 1
to find a satisfying solution (line 9). The current solution is replaced by the new solution
(which might be the same as the old solution) if either (1) the routing cost of the new
solution is lower than the current solution; or (2) with some probability d (line 10). If
the current solution is better than the best solution, then the best solution is updated
(line 13). At the end or if the time limit is reached, the best solution found is returned
(line 14-15 and line 16).



LNS-FFPA has some unique features compared to the standard LNS algorithms.
First, during the neighborhood exploration, LNS-FFPA does not search for a solution
with a routing cost better than the current solution, just a feasible solution. This diver-
sifies the search and, equally importantly, enables LNS-FFPA to explore many reinser-
tions effectively. Indeed, since the selection of the requests to relax is randomized, it is
not very likely that the search can discover better solutions for a given reinsertion set.
Hence, it is not cost-effective to explore the sub-neighborhood exhaustively in the hope
of finding a better solution. We could limit the number of insertion points per requests
as is done in [12, 2, 3] but the algorithm would still take significant time on unsuccessful
searches, while reducing the probability of finding high-quality solutions. Instead, we
simply let Algorithm 1 find the first feasible, but not necessarily improving, solution, its
variable and value heuristics guiding the search towards good solutions. Since finding a
feasible solution is fast, LNS-FFPA explores many reinsertions, while providing a good
diversification. This aspect is critical and led to significant improvements in quality, as
will be demonstrated shortly.

7 Numerical Results

This section presents the experimental results, justifies the design decisions underlying
our LNS-FFPA algorithm, and compares the algorithm with prior algorithms.

The Algorithms We compared our LNS-FFPA algorithm against the CP approach of
Berbeglia et al. [5], the tabu search by Cordeau et al. [7], and the variable neighborhood
search by Parragh et al. [11]. For the parameters for Algorithm 1, we set α = 80 and
β = 1. For the parameters for the restart strategy, we set γ = 200 and τ = 1000. For the
LNS Search, we set maxSize = n/2, where n is the number of requests, range = 4,
numIter = 300, and d = 0.07.

The LNS-FFPA and Variable Neighborhood Search algorithms 2 were tested on a
Intel Core 2 Quad Q6600 machine with 3 GB of RAM. The Comet language was used
to implement the LNS-FFPA algorithm and is in general 3–5x slower than comparable
C++ code. As the code for VNS and Tabu Search is implemented in C++, we conserva-
tively divide the amount of time LNS-FFPA takes by a factor of 3 for this evaluation.

The code for the the tabu search was unavailable and hence, we can only compare
with the tables given in [7] which report results for only one or two runs of the algo-
rithm.3 This comparison is much less reliable than the comparison with the most recent
Variable Neighborhood Search [11] but is given for completeness.

The Instances The Dial-a-Ride instances are taken from Parragh et al. [11] and Cordeau
et al. [7]. They are based on realistic assumptions and data provided by the Montreal
Transit Commission (MTC). Half of the requests are outbound and half inbound. They
are divided into classes a and b, the difference being that class a instances have tighter

2 Many thanks to Parragh et al. for providing us with the code for the VNS search.
3 As the tabu search was run on a 2 GHZ machine, when it is compared with the LNS-FFPA

algorithm, the time for LNS-FFPA is divided by 2.5 instead of 3.



5 minute run
Class a LNS LNS-FFPA
m n Mean Best Mean Best
3 24 191.14 190.02 190.77 190.02
4 36 302.77 296.36 292.86 291.71
5 48 318.50 312.12 304.45 303.03
6 72 537.10 526.54 505.15 494.91
7 72 577.13 547.69 547.39 542.83
8 108 768.08 736.14 711.60 696.51
9 96 660.67 636.50 595.05 588.80

10 144 987.70 950.01 911.18 891.98
11 120 722.87 696.95 662.56 653.57
13 144 915.34 905.03 832.74 816.79

Avg. 598.13 579.74 555.38 547.02

5 minute run
Class b LNS LNS-FFPA
m n Mean Best Mean Best
3 24 170.29 167.78 164.46 164.46
4 36 263.27 252.99 248.31 248.21
5 48 318.51 308.51 301.67 299.27
6 72 509.89 494.97 477.75 469.73
7 72 548.22 530.45 504.69 494.01
8 108 682.50 647.85 633.51 620.54
9 96 611.66 595.32 566.48 557.61

10 144 952.60 918.76 857.95 838.65
11 120 671.87 650.27 610.33 602.19
13 144 870.30 846.16 785.13 771.69

Avg. 559.91 541.31 515.03 506.64

Table 1: The Benefits of LNS-FFPA.

time windows. In the instances, m denotes the number of vehicles and n is the number
of requests.

The Benefits of LNS-FFPA Before comparing LNS-FFPA with prior art, it is use-
ful to evaluate our main design decision and compare LNS and LNS-FFPA. Standard
LNS algorithms (e.g., [12, 3, 2]) always search for an improving solution and limit the
number of insertion points to explore the “good” parts of the subproblems. In contrast,
LNS-FFPA does not require the subproblem to find an improving solution: It simply
searches for the first feasible solution to the subproblem using the heuristic to drive the
search toward a high-quality solution. Moreover, LNS-FFPA may accept the solution
to the subproblem even if it degrades the best-known solution, using a Probabilistic
acceptance criterion.

Table 1 compares LNS and LNS-FFPA and reports the mean and best solutions
found over 10 different 5-minute runs for each instance. In the table, m denotes the
number of vehicles and n the number of requests. The experimental results indicate
that LNS-FFPA leads to solutions of significantly higher quality and to a more robust
algorithm. The average improvement for the Class a instances is about 8% and is higher
for the larger instances. For Class b, the average improvement is also around 8% and,
for larger instances, improvement of almost 10% are observed. It is also important to
stress how robust LNS-FFPA is, since the difference in quality between the best and the
average solutions is rather small.

Table 2 evaluates the impact of the two novel aspects of LNS-FFPA: It reports the
results of LNS-FF which never accepts any worse solution. The results show that the
two additional components of LNS-FFPA are complementary but with the First Fea-
sible criterion having a slighly larger effect. Indeed, without Probabilistic acceptance
criterion, the average improvement drops from 8% to 4.2% on Class a instances and
from 8% to 4.5% on Class b.



5 minute run
Class a LNS LNS-FF
m n Mean Best Mean Best
3 24 191.14 190.02 190.224 190.019
4 36 302.77 296.36 297.419 293.038
5 48 318.50 312.12 307.449 304.051
6 72 537.10 526.54 518.945 507.672
7 72 577.13 547.69 556.872 546.893
8 108 768.08 736.14 736.739 714.860
9 96 660.67 636.50 626.956 598.675

10 144 987.70 950.01 937.208 912.302
11 120 722.87 696.95 685.016 670.116
13 144 915.34 905.03 875.007 849.761

Avg. 598.13 579.74 573.18 558.74

5 minute run
Class b LNS LNS-FF
m n Mean Best Mean Best
3 24 170.29 167.78 166.57 164.46
4 36 263.27 252.99 257.02 255.96
5 48 318.51 308.51 309.43 299.02
6 72 509.89 494.97 488.90 478.19
7 72 548.22 530.45 526.87 511.35
8 108 682.50 647.85 645.20 624.61
9 96 611.66 595.32 593.90 574.23

10 144 952.60 918.76 903.58 883.29
11 120 671.87 650.27 640.77 615.96
13 144 870.30 846.16 811.58 795.23

Avg. 559.91 541.31 534.38 520.28

Table 2: The Impact of the Acceptance Criterion.

It is also important to mention that simply adding the Probabilistic criterion to the
standard LNS was not effective. In other words, accepting the best solution found in
the neighborhood with a Probabilistic criterion actually deteriorated performance, in-
dicating that it is the combination of stopping at the first feasible solution and using
the Probabilistic criterion which is key to obtain enough search diversity. A potential
explanation is that LNS-FFPA can exploit the diversification of accepting a worse solu-
tion a lot better since it explores a lot more neighborhoods whereas the standard LNS
algorithm spends too much time trying to find a better solution in fewer neighborhoods.

Overall, these results show that LNS-FFPA is a critical aspect of this research. For
Dial-a-Ride problems, more diversification is key to improving quality. This diversifi-
cation can be obtained either by accepting worse solutions or by exploring more neigh-
borhoods since the search terminates as soon as a feasible solution is found.

Comparison with the Variable Neighborhood Search We now compare LNS-FFPA
with the state-of-the-art Variable Neighborhood Search (VNS) of Parragh et al. [11].
Table 3 depicts the results for class a instances.4 Except for small instances with three
vehicles, LNS-FFPA produces results that are consistently better on average and fre-
quently better in terms of the best solutions. As the n/m ratio rises, the difficulty and
the instance size increase and the LNS-FFPA produces increasing benefits. For the 1.6
min runs, LNS-FFPA improves the quality of the solution by 6.1% in average and by
24.2% in the best case. For the 5 min runs, LNS-FFPA produces improvement of about
3% in average and 14% in the best case.

These results indicates that LNS-FFPA is a very effective approach to find high-
quality solutions under severe time constraints to complex Dial-a-Ride problems.

4 A comparison against the class b instances was not possible as the solver seemed to require
some user interaction during the search on those instances



1.6 minute run
Class a VNS LNS-FFPA
m n Mean Best Mean Best
3 24 190.02 190.02 191.02 190.79
4 36 294.42 291.71 294.00 291.71
5 48 306.10 302.45 305.30 303.39
6 72 507.54 501.31 506.65 494.91
7 72 553.85 536.23 548.76 542.94
8 108 843.64 783.24 723.64 699.95
9 96 611.86 592.91 607.06 597.98
10 144 1223.18 1189.36 926.98 909.51
11 120 724.52 681.1 667.45 655.16
13 144 991.18 976.85 856.84 846.56

Avg. 624.63 604.48 562.77 553.29

5 minute run
Class a VNS LNS-FFPA
m n Mean Best Mean Best
3 24 190.02 190.02 190.77 190.02
4 36 293.77 291.71 292.86 291.71
5 48 305.84 302.45 304.45 303.03
6 72 507.21 501.31 505.15 494.91
7 72 552.54 536.23 547.39 542.83
8 108 730.48 701.71 711.60 696.51
9 96 610.30 602.40 595.05 588.80
10 144 1059.52 1021.72 911.18 891.98
11 120 686.11 672.23 662.56 653.57
13 144 885.67 869.56 832.74 816.79

Avg. 582.15 568.93 555.38 547.02

Table 3: Comparing VNS and LNS-FFPA.

Class a Tabu LNS-FFPA
m n 1 Run Time Mean Mean Time
3 24 191.05 0.19 191.13 0.40
4 36 292.80 0.44 296.99 0.40
5 48 304.04 0.81 306.73 0.80
6 72 506.62 2.4 506.65 2.40
7 72 550.48 1.72 549.84 1.60
8 108 732.12 5.51 711.60 5.20
9 96 597.32 2.88 602.15 2.80

10 144 933.22 8.75 909.17 8.40
11 120 691.55 4.62 664.58 4.40
13 144 870.66 5.39 834.40 5.20

Avg. 566.99 3.27 557.32 3.16

Class b Tabu LNS-FFPA
m n 1 Run Time Mean Mean Time
3 24 165.31 0.19 167.67 0.40
4 36 253.04 0.42 255.45 0.40
5 48 304.73 0.83 305.99 0.80
6 72 495.31 2.29 480.27 2.00
7 72 510.86 1.85 509.38 1.60
8 108 657.96 5.13 632.89 4.80
9 96 563.24 3.12 570.02 2.80

10 144 909.58 9.24 857.49 9.20
11 120 615.36 5.43 616.31 5.20
13 144 810.65 7.37 788.33 7.20

Avg. 528.60 3.59 518.38 3.44

Table 4: Comparing Tabu Search and LNS-FFPA.

Comparison with the Tabu Search Table 4 compares LNS-FFPA and the tabu search
of [7] on short runs for the classes a and b. As mentioned earlier, Cordeau did not release
his algorithm whose results seem very hard to reproduce. The table reports the tabu-
search results as given in [7] where the quality of a single solution, and the time to obtain
it, are given. The results for LNS-FFPA are obtained by snapshots of the execution,
selecting the best-found solution within the time reported by the tabu search. The tabu
search is slightly better on the small instances. However, as the instances get larger and
harder with the n/m ratio increasing, LNS-FFPA gives much better results. In the best
case, LNS-FFPA produces a 5.7% improvement while producing a 1.1% improvement
on average. However, when restricting attention to larger instances (m > 5), LNS-FFPA
algorithm produces an improvement of about 2% which becomes 3% if the largest three
instances are considered. Given the high-quality and sophistication of both the VNS and
the tabu-search algorithm, these improvements are significant.



These results are particularly appealing given the severe time constraints. For many
problems, a dedicated local search produces solutions of higher quality than LNS early
on, since LNS is a general-purpose technique on top of an existing optimization algo-
rithm and does not have dedicated neighborhood operators. On Dial-a-Ride problems
however, LNS-FFPA produces better solutions than highly-tuned tabu search or vari-
able neighborhood search within short time limits, especially on the large instances.
This gives LNS-FFPA a significant advantage in dynamic settings since high-quality
solutions would need to be found quickly in that scenario. A potential explanation is
that the complexity of the side-constraints increases the cost of local moves in tabu and
variable neighborhood searches, making LNS-FFPA very competitive.

Comparison with the Constraint-Programming Approach We conclude this section
with a comparison to the constraint-programming approach of Berbeglia et al. [5] who
report the time taken to find a satisfying solution for their CP solver and for the tabu-
search solver. These feasibility problems are tested on different instances: They have
vertices located in a [−20, 20]2 square, over a time horizon of 12 hours, with time
windows of 15 minutes, and vehicle capacity of 3 for instances from set a and 6 for
instances from set b. The ride time is 30 minutes. The time taken by Algorithm 1 to
find a satisfying solution is 0.5-2 seconds which is comparable to the time taken by
tabu search and, on average, 12 times faster than the CP approach of Berbeglia et al [5].
The exception is instance b5-40 where it cannot find a solution for a time limit of 60s.
Algorithm 1 can also detect infeasibility in less than a second for all the infeasible
instances described in [5] which were obtained by reducing the maximum ride time.

8 Conclusions and Future Work

This paper considered Dial-a-Ride applications, which are complex multiple-vehicle
routing problems with pickups and deliveries, time windows, and constraints on the
ride time. Moreover, these applications are typically dynamic, as customers dial for
rides. As a result, optimization algorithms must return high-quality solutions quickly.

The paper presented a novel large neighborhood search LNS-FFPA, which contains
two key technical contributions. First, LNS-FFPA does not search the neighborhoods
for improving solutions and rather returns the first feasible solution. Second, such a
feasible solution is accepted if it improves the existing incumbent solution or using a
Probabilistic criterion.

Experimental results for benchmarks based on realistic assumptions and data pro-
vided by the Montreal Transit Commission (MTC) show the effectiveness of LNS-
FFPA. On short runs (of 1.6 and 5.0 minutes), LNS-FFPA significantly outperforms the
state-of-the-art VNS and tabu search algorithms which are both rather sophisticated.
LNS-FFPA also compares very favourably with the constraint-programming approach
for finding feasible solutions, often producing significant improvements in efficiency.
The experimental results also demonstrate the benefits of LNS-FFPA over a traditional
LNS approach, as it improves solution quality by about 8%. Finally, LNS-FFPA was
particularly effective on the largest instance, where its benefits are larger.



Future work will study if the spatial and temporal structure of Dial-A-Ride appli-
cations can be exploited in the choice of the neighborhood instead of relying on pure
random selections. Moreover, it would be interesting to study the dynamic problem in
the framework of online stochastic optimization to evaluate if stochastic information
would be valuable in this setting.

References

1. BAUGH JR., JOHN W., K., REDDY, G. K., AND STONE, J. R. Intractability of the dial-
a-ride problem and a multiobjective solution using simulated annealing. Engineering Opti-
mization 30 (1998), 91–123.

2. BENT, R., AND HENTENRYCK, P. V. A two-stage hybrid algorithm for pickup and delivery
vehicle routing problems with time windows. Comput. Oper. Res. 33 (April 2006), 875–893.

3. BENT, R., AND VAN HENTENRYCK, P. A two-stage hybrid local search for the vehicle
routing problem with time windows. Transportation Science 38 (November 2004), 515–
530.

4. BERBEGLIA, G., CORDEAU, J.-F., AND LAPORTE, G. A hybrid tabu search and constraint
programming algorithm for the dynamic dial-a-ride problem. Submitted to INFORMS Jour-
nal on Computing (2010).

5. BERBEGLIA, G., PESANT, G., AND ROUSSEAU, L.-M. Checking the feasibility of dial-a-
ride instances using constraint programming. Transportation Science (2010).

6. BERBEGLIA, G., PESANT, G., AND ROUSSEAU, L.-M. Feasibility of the pickup and de-
livery problem with fixed partial routes: A complexity analysis. Submitted to Transportation
Science (2010).

7. CORDEAU, J.-F., AND LAPORTE, G. A tabu search heuristic for the static multi-vehicle
dial-a-ride problem. Transportation Research Part B: Methodological 37, 6 (July 2003),
579–594.

8. CORDEAU, J.-F., AND LAPORTE, G. The dial-a-ride problem: models and algorithms. An-
nals of Operations Research 153 (2007), 29–46. 10.1007/s10479-007-0170-8.

9. GLOVER, F. Ejection chains, reference structures and alternating path methods for trav-
eling salesman problems. Discrete Applied Mathematics 65, 1-3 (1996), 223 – 253. First
International Colloquium on Graphs and Optimization.

10. JORGENSEN, R. M., LARSEN, J., AND BERGVINSDOTTIR, K. B. Solving the dial-a-ride
problem using genetic algorithms. Journal of the Operational Research Society 58 (October
2007), 1321–1331(11).

11. PARRAGH, S. N., DOERNER, K. F., AND HARTL, R. F. Variable neighborhood search for
the dial-a-ride problem. Computers & Operations Research 37, 6 (2010), 1129 – 1138.

12. SHAW, P. Using constraint programming and local search methods to solve vehicle routing
problems. In Proceedings of the 4th International Conference on Principles and Practice of
Constraint Programming (London, UK, 1998), CP ’98, Springer-Verlag, pp. 417–431.

13. TOTH, P., AND VIGO, D. Heuristic algorithms for the handicapped persons transportation
problem. Transportation Science (1997), 60–71.


