
A majorfeature of the VAX-lI is its large virtual address space.
This trace-driven simulation scheme evaluates address translation

hardware that supports thisfeature cost-effectively.
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One of the major architectural limitations of the
PDP-I I has been its small virtual address space. This has
been especially true during the last few years, as the level
of sophistication of traditional minicomputer applica-
tions has risen. Consequently, the extension ofvirtual ad-
dress space was a primary goal ofVAX architects. (Over-
views of VAX architecture are given by Streckerl and
Levy and Eckhouse.2) A full 32-bit virtual address was
chosen for VAX to ensure a long lifetime. Such a large ad-
dress space requires an address translation mechanism
other than that used by the 64K-byte virtual address space
of the PDP-1 1.
The PDP-I1 uses page tables that are architecturally

specified as processor registers, which must be updated by
the operating system at context switch time. Such a
scheme is impractical for a large address space. The
PDP-I I needs eight page-table entries per processor
mode to map eight pages, each of which is up to 8K bytes
long. Even with an 8K-byte-page size, it would take 512K
page-table entries to map the 4G bytes (G = 2 * * 30) of
address space provided by VAX. The VAX architecture
uses a 512-byte page to reduce internal fragmentation and
increase effective physical memory utilization.

Detailed justification of the design trade-offs that led
to the memory management architecture are beyond the
present scope. This article deals with the analysis of the
design trade-offs for the hardware implementation of the
VAX address translation mechanism.

Overview of VAX memory management

The four-gigabyte address space is divided into four
regions, as shown in Figure 1. The first two regions, pro-
gram and control, comprise the per-process virtual ad-
dress space, which is uniquely mapped for each process.
The other two regions make up the system virtual address
space that is common to all processes. The program
region contains user programs and data. The control
region contains the.user stack and operating system data
structures specific to the user process. The system region
contains procedures and data common to all user pro-
cesses, and page tables.

Virtual and physical address formats are shown in
Figure 2. Bits 8:0 specify a byte within a 512-byte page as
the basic mapping entity. Bits 29:9 specify a virtual page
number, or VPN, within one of the four virtual address
regions. The system region has its page table defined in
physical memory by a base-and-length register. Thus, the
system-region page table is contiguous in physical mem-
ory. The per-process space page tables are defined by the
program and control region base-and-length registers.
However, these base registers do not contain physical ad-
dresses; rather, they contain system-region virtual ad-
dresses. Thus, the per-process page tables are contiguous
in the system-region virtual address space and are not
necessarily contiguous in physical memory. This allows
the per-process page tables to be paged.
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Figure 1. Virtual and physical address space.

The page tables provide mapping and protection infor-
mation for each virtual page in the system. Each page-

table entry is 32 bits long, as shown in Figure 3. To
translate a virtual address to a physical address, the pro-

cessor simply uses the VPN as an index into the ap-

propriate page table, which was taken from the given
page-table address. Note that the per-process virtual ad-
dress requires two memory accesses to generate a physical
address: one to access the system page table, to determine
the physical address of the page-table entry, or PTE; and
one to access the PTE itself. Such overhead would be
unacceptable if it occurred on every memory access. In
order to save actual memory references when repeatedly
referencing the same set of pages, VAX implementations
include a hardware mechanism called a translation buf-

fer, or TB, to remember successful virtual-to-physical ad-
dress translations.

Translation buffer overview

The translation buffer can be viewed as a cache for ad-
dress translation. Both the VAX-1 1/780 and the
VAX-I 1/750 contain a two-way set-associative TB. The
VAX- 11/780TB can cache up to 128 address translations;
the VAX-11/750 TB has up to 512 entries. In both
machines, the TB is divided into halves: one for per-

process regions, and the other for the system region. The
per-process TB entries are automatically invalidated by
the processor when a load process context instruction is
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Figure 2. Virtual and physical address formats.

executed. The architecture allows the operating system to
selectively invalidate all entries or an entry corresponding
to a particular virtual address. Such invalidation is nec-

essary when a PTE is changed in the page tables by the
operating system.
A canonical diagram of a TB is shown in Figure 4. The t

TB consists of several identical sets. The number of such ACCESS

sets is termed SET-SIZE. Each set contains a tag field STATUS

and a physical page frame number, or PPFN, field. The 1 PHYSIC}
index part of the virtual address is used to index into one BIT 26

entry in each set. If the tag field of the virtual address BITS 21

matches the tag stored in theTB entry, a hit occurs and the BITS 0-
PPFN is used to generate the physical address. Figure 5
shows how the virtual address is used by the TB in the ACTIVA1
VAX-1 1/780.3 BITS 0-

The performance oftheTB can be measured in terms of Dl
its hit ratio, i.e., the fraction of translations found in the TE

TB. (We chose a slightly different parameter, for reasons

to be explained later.) The hit ratio is a function of both
theTB organization and the program characteristics. The Figure 3. Page table entry.
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TB organization can be described in terms of the follow-
ing design parameters:

* TB_SIZE: total number of PTEs in the TB.
* SET-SIZE: number of entries that can potentially

contain the translation for a specific virtual address.
It is also referred to as the degree of associativity.

* Replacement algorithm for TBs with SET-SIZE
greater than one.

Another factor that affects TB performance is at-
tributable to parameters such as operating system time-
slice and other events that force a context switch.

VAXtrace: A performance analysis tool

There are three fundamentally different approaches to
evaluating the performance of a computer system or sub-
system. One is analytical and involves building math-
ematical models that are tractable, yet accurate enough to
capture the essence of the phenomenon being studied.
The second is to experimentally observe the system and
measure its performance. Simulation, the third ap-
proach, usually involves some known system parameters
or behavior patterns that drive a simulation model. The
known system parameters might be obtained from prior
measurements.

There are two major factors that affect TB perfor-
mance. One is the TB configuration-its size, set asso-

TB GROUP N-1

VALID TBGROUP1

_ TAG PTE

LENGTH TB GROUPP O

~SET SIZE=N

Figure 4. Canonical TB configuration.
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Figure 5. TB usage of virtual address fields.

ciativity, etc. The other is the specific pattern of virtual
address references presented for translation.

Analytical evaluation of the performance of a TB re-
quires a concise, accurate mathematical characterization
of the memory reference pattern generated by a program.
No such characterization exists at the present time, so the
analytical approach is ruled out. Direct measurement of
TB performance is possible by hardware monitoring of
the references to and hits in the TB. However, such an ef-
fort would be restricted to the analysis of the performance
of translation buffers that have been built to date. Conse-
quently, the only viable alternative is to use trace-driven
simulation to measure TB performance.
Two major steps are involved in simulating the TB.

First, a trace of the virtual address references made during
the execution of a program has to be obtained. This trace
is then used to drive a model that simulates the working of
the TB.

Trace generation. The VAX architecture incorporates
a feature called the trace trap, which facilitates the
generation of a reference trace. Present in the processor
status longword, or PSL, is the T-bit, which can be set by
a program in user mode. If the T-bit is set at the beginning
of an instruction, the hardware forces a trap at the end of
that instruction. This trap is fielded by the operating
system and signalled as an abnormal condition. A user-
written condition-handling routine, whose existence is
made known to the operating system before the setting of
the T-bit, is given control of this condition. The PC, PSL,
register contents, and information describing the condi-
tion are passed as inputs to this routine. The condition
handler processes the condition (in this case, by recording
the memory references of the next instruction) and re-
turns control to the operating system. The operating
system, in turn, proceeds with the execution of the pro-
gram being traced. The next instruction is executed, a
trace trap is taken, and the entire cycle repeats. A more
detailed account of how the hardware and software treat
trace traps is found in the VAX-11/780 Architecture
Handbook.4

The user-written condition-handling routine is linked
to the program to be traced. The resulting executable
module is then run. This run creates a trace file that con-
tains every virtual address reference made by the program
in user mode. This file uses a simple data compression
scheme to reduce the physical length of the trace. It con-
tains information on the type of each reference (read,
write, or modify) and miscellaneous information such as
whether the reference is to the instruction stream, wheth-
er there is a break in the sequential flow of instruction
stream references, etc. The trace file is used as input to the
TB simulation program.

TB simulation program. The program used to simulate
the TB is relatively straightforward. Originally, the entire
program was written in Fortran, but (after some use) cer-
tain parts of it were recoded in assembly language to im-
prove performance. The TB itself is divided into two
multidimensional arrays, with the number of dimensions
being equal to the number of sets in the TB. One array
represents the validity bits of the TB, and the other
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represents the tags (the virtual addresses corresponding to
each of the valid entries). The physical address mapping
information is not maintained, since no translation ac-

tually occurs; only look-ups and updates of the tag and
validity portions of the TB take place.
For TBs with a set size greater than one, a random selec-

tion rule is used to select the TB group (see Figure 4) whose
entry is to be replaced. We did not investigate the effect of
replacement algorithms; similar studies of program cache
performance have shown the replacement algorithm to be
of secondary importance.5
The VAX-I 1/780 has a pretranslation mechanism as

part of its instruction buffer (I-buffer). This mechanism
keeps track of the physical page corresponding to the cur-

rent instruction stream (I-stream) virtual page. Refer-
ences tp the I-stream can be translated by the I-buffer
without using the TB or page tables, as long as the instruc-
tion flow is sequential and a page boundary is not crossed.
Pretranslation is used in the simulation program, too;
however, it can be turned off in order to model a machine
like the VAX-1 1/750, which does not use pretranslation.

Context switching is usually detrimental to TB perfor-
mance. When a context switch occurs in the VAX, the
mapping tables for the per-process part of the TB must be
invalidated. If context switches occur often enough, the
frequent clearing of the TB can cause significant perfor-
mance degradation. The simulation program incorporates
code to simulate the periodic clearing of the TB. The time
between clearings is assumed to be exponentially distrib-
uted; the user can specify the mean of this distribution.

Measurements

The function of a TB is to speed up the translation pro-
cess by reducing the average amount of time needed to

perform a PTE look-up. Letp be the probability of find-
ing the desired PTE in the TB. Further, let tl be the access

time for a PTE when it is in the TB; let t2 (> tl) be the ac-

cess time when it is not. The expected time for performing
a page-table look-up is p * tl + (l-p) * t2. The quantities
tl and t2 are functions ofthe specific hardware implemen-
tation, a factor that includes clock rates, bus speeds,
memory speed, and logic implementation. The quantityp
is dependent on both the TB configuration and the
specific program being observed. A change in any TB
parameter usually affectsp significantly. Consequently, p
is often used as a measure ofTB performance and is called
the hit ratio. The quantity I-p is an equally valid perfor-
mance measure; it is called the miss ratio.
As described earlier, a reference to a virtual address in

process space might need two levels of translation before
it can be mapped into the corresponding physical address.
The first of these translations is for an address generated
by the program. This address is called an explicit ref-
erence. The second is for an implicit address generated in
the translation process. Using the hit ratio as a measure of
performance is not quite appropriate here, since it would
ignore implicit references. The single number that best
characterizes VAX TB performance is the average

number of main memory references to page tables per ex-

plicit virtual memory reference. If each explicit virtual
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memory reference results in one TB lookup (as is the case
in most other virtual memory systems), this number
would equal the miss ratio. In the present case, implicit
references cause this number to be slightly higher than
the miss ratio. We use the average number ofmemory ref-
erences per translation as the figure of merit for a TB con-
figuration.

Because of the presence of pretranslation in the
VAX-11/780, many references to the I-stream are not
subjected to the usual translation process. Consequently,
the total number of references to the TB is less than the
numnber of references generated by the program. In com-
puting the figure of merit of the TB, we count only those
program-generated references that are actually presented
to the TB as explicit.

Raw results. Figure 6 is an example of the data
generated by the TB simulation program. The first few
lines identify the trace file and the program whose execu-
tion was traced. Below this are the parameters of the par-
ticular TB configuration. TB_SIZE, the total number of
elements in the TB, is the product of TB_LENGTH and
SET_SIZE. The clear interval is the mean of the exponen-
tial distribution used to simulate the periodic clearing of
the TB.
The simulation results follow these preliminary details.

References are classified into process space references, ex-
plicit system space references, and implicit system space

references. The fourth column lists the total number of
explicit references (system + process). The final column
lists all references-explicit and implicit, system and pro-
cess. The number of references of each of these types, the
number of misses in each case, and the miss ratios follow.
The ratio of the overall number of misses to the total
number of explicit references gives the average number of
main memory references per explicit translation. The
number of references to the I-stream and the number of
references for which translation was avoided because of
pretranslation in the I-buffer are found in the last two
lines.

Interpretation of the data. In this study, four quantities
that could affect TB performance were varied and the ef-
fects observed. These quantities are the TB length, TB set
size, the clear interval, and the traced program itself.
Figures 7 through 10 depict the effect of each of these
variables on TB performance. Again, the number of
memory references per explicit translation is the measure
of performance. Since the trace program only collects
references in user mode, and since there are very few
system space references in user mode, this quantity is very
close to the miss ratio in most virtual memory systems.
The performance measure excludes address transla-

tions not presented to the TB due to pretranslation hits.
Typically, about two-thirds of all translations can be
avoided by pretranslation. Without pretranslation, most

Figure 6. Data generated by the TB simulation program
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of these sequential instruction stream references would
result in TB hits. Pretranslation is faster than aTB hit, but
requires a little extra hardware.

Figure 7 shows the effect of varying the TB length. Per-
formance improves as length increases, because more
PTEs can be held in the TB at any given time. If the work-
ing set of a program always consists of contiguous virtual
pages, increasing the TB length will always improve TB
performance. The reason for this is that as the TB length
increases, the probability that two pages in the working
set will map into the same TB slot decreases.

In practice, the working sets of typical programs do not
consist of contiguous pages, so there is an inevitable flat-
tening of the performance curve as the TB length in-
creases. The point at which the flattening sets in depends
on both the program and the other TB variables. Figure 6
indicates that for a set size of one, increasing the TB
length up to 256 increases performance significantly. For
set sizes oftwo and four, increasing the length beyond 128
and 64, respectively, is of only marginal value. (Note that
both the VAX-i 1/780 and the more recent VAX-11/750
use a set size of two.) The capacity of the fast-memory
chips available in the mid 1970's limited the length of the
VAX-1 1/780 TB to 64. The VAX-i 1/750, which was in-
troduced three years later, uses a chip with four times as
many bits. The TB length for the VAX-i 1/750 is 256.
The effect of set size on performance is shown in Figure

8. Each of the curves is a constant TB_SIZE curve; i.e.,
the total number of entries in the TB is constant. For in-
stance, a TB of size 64 can be configured with a set size of
one and a length of 64, or a set size of two and a length of
32, or a set size of four and a length of 16, and so on. The
limiting case is a TB with a set size equal to the number of
entries; i.e. a fully associative TB. For a given TB_SIZE,
as the set size increases, so does the number of entries into
which a given virtual address can map. Consequently,
even it two pages in the working set have the same index,
their hage-table entries can coexist in separate sets, im-
proving TB performance. For a given TB_SIZE, the best
performance is obtained at the maximum set size. Figure 8
shows that for the program being studied, increasing the
set size from one to two and from two to four improves
performance significantly. Beyond this, the program
characteristics are such that increasing the set size does
not pay off. Our studies ofother programs indicate that in
most cases significant improvement occurs up to a set size
of four.
We studied the effects of three programs: a Fortran

compilation, a Macro assembly, and a link. Figure 9 il-
lustrates the effects of program behavior. One obvious
conclusion is that there can be no "typical" program; the
performance of the TB depends significantly on the pro-
gram being observed. Still, the general shapes of the
curves are the same, and this indicates that varying the TB
configuration has the same qualitative effect on the per-
formance of different programs. The actual numbers one
obtains, however, depend on the program itself.
The graph shows an apparent anomaly for the 6urves

corresponding to a set size of one. A Macro assembly re-
quires more memory references than a Fortran compila-
tion for TB lengths of 32 and 64; increasing the length to

Figure 7. Effect of TB length-Fortran compilation, pre.
translation present.

Figure 8. Effect of set size-Fortran compilation, pre.
translation present.
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Figure 9. Effect of program variation.

Figure 10. Effect of clearing TB-Fortran compilation: TB
length = 128, set size = 2.

128, however, yields more memory references for Fortran
compilation than for Macro assembly. Such variations in
TB performance should not be considered anomalies, but
manifestations of differences in the behavior of different
programs.

Figure 10 shows what happens to performance as the
user portion of the TB is cleared at periodic intervals.
Each clearing usually corresponds to a context switch in a
multiprogramming environment. Shortening the clear in-
terval to 1000 references degrades performance signifi-
cantly. There is a noticeable loss in performance even at a
clear interval of 10,000 references. Larger clear intervals
yield performance figures close to the asymptotic value
obtained when the TB is never cleared. Our measure-
ments of typical educational timesharing work loads in-
dicate that the clear interval is around 25,000 references.

Further investigations. The current measurement work
can be extended in several directions. The effect of re-
placement algorithms needs to be analyzed; our suspicion
that it is a second-order effect needs to be validated.
Traces for system routines could also be analyzed. Our
study analyzed TBs with equal sections reserved for per-
process and system virtual addresses. Generation of a
more composite trace that includes the operating system
references would open several other options to analysis.
One alternative is to use a single large TB, all of which is
flushed at context switch time. Another is to configure the
two separate sections independently. It would also be in-
teresting to integrate this model of the TB into an overall
system model to investigate the overall translation time as
a function of not only the TB configuration, but factors
such as instruction buffer speed and length, cache con-
figuration, memory system implementation, and pro-
cessor organization.6 The behavior of very large pro-
grams (much greater than a megabyte) also remains to be
analyzed.

Conclusions

The data suggests certain broad conclusions about TB
design:

(1) The specific program is as important a factor in
determining performance as any of the design parameters
of the TB. To predict the performance of a specific TB
design, one must observe its performance on a variety of
the type of programs that will make up most of the work
load of the computer being designed. If a single number is
needed to characterize the performance of a TB design,
these individual performance measures must be weighted
in some way, perhaps by the relative frequency of use of
the programs to which they correspond. However, the
different programs we analyzed exhibited the same qual-
itative behavior. All reached a point of diminishing
marginal performance improvement at approximately
the same TB configuration.

(2) Set associativity is very desirable. Significant per-
formance improvement is seen in enlarging set size from
one to two. Beyond a set size of four, performance im-
provement is marginal.
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(3) The frequency of context switches can affect TB
performance significantly.
Measurements must always be evaluated in conjunc-

tion with other implementation factors. One cannot, for
instance, conclude that a set size of two is always the best

choice. Cost effectiveness might be better for a 256 x I
configuration than for a 64 x 2. Note that cost is a func-
tion of the actual configuration, not merely the size, and
that performance requirements for the TB are likely to

vary for different implementations. The overall transla-
tion time is also affected by the memory and processor cy-

cle times.

A great many decisions must be made in this area. The
quantitative information presented here should help the
hardware implementer make intelligent design trade-
offs. *
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and implementation of compilers for such
languages as FORTRAN, Ada, Pascal,
Jovial and HAL.

'SENIORSOFTWARE
TEST ENGINEERS

To direct the design and implementation of
a test suite to validate new compilers'
language coverage and implementation of
translation and optimization algorithms.

SUPPORTSOFTWARE
SPECIALISTS

To specify, design and implement editors,
debuggers, linkers, loaders, and static
analyzers in the development of user-
friendly-systems.
We offer an outstanding benefits program,
flexible hours, and a results-oriented,
informal environment which encourages a

variety of recreational and intellectual
activities.
For further information, call Karen Aylmer
collect at (617) 661-1840 or write to:

Personnel Department
INTERMETRICS, INC.
733 Concord Avenue
Cambridge, MA 02138

Permanent Residency or U.S.
Citizenship Required

An Equal Opportunity Employer
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