1 3-Coloring

Protocol: to be repeated $|E|k$ times or until rejection

1. Prover creates and commits to a random permutation of a 3-coloring of G using the colors $\{1,2,3\}$.

2. Verifier randomly selects an edge (u,v) of G.

3. Prover reveals the colors of u and v.

4. Verifier accepts iff the colors are in $\{1,2,3\}$ and distinct.

Zero-Knowledge: At each round, an honest Prover shows the Verifier two random different colors. Clearly, the Verifier could simulate this by himself, by just picking two colors at random.

Completeness: Obviously the protocol is complete: if the Prover knows a 3-coloring then he can always pass the above test.

Partial Soundness: If the Prover does not actually know a good coloring, then the coloring he commits to must be wrong in at least one edge. Let m be the number of edges in the graph; the Verifier will choose a mis-colored edge at least $1/m$ of the time. Thus, after km rounds, a dishonest Prover will have successfully fooled the Verifier with probability at most $(1 - 1/m)^{mk} \leq 1/e^k$

References: None

2 Edge Coloring

Protocol: to be repeated $|V|k$ times or until rejection

1. Prover creates and commits to a random permutation of the colors of a d-coloring of G using the colors $\{1,\ldots,d\}$.

2. Verifier randomly selects a vertex v of G.

3. Prover reveals the colors of all incident edges of v.

4. Verifier accepts iff the colors are in $\{1,\ldots,d\}$ and distinct.
Zero-Knowledge: At each round, an honest Prover shows the Verifier some random different colors. Clearly, the Verifier could simulate this by himself as in the previous problem.

Completeness: Obviously the protocol is complete.

Partial Soundness: If the Prover does not actually know a good coloring, then the coloring he commits to must be wrong in the neighborhood of at least one vertex. Let \(n \) be the number of vertices in the graph; the Verifier will choose a bad vertex at least \(1/n \) of the time. Thus, after \(kn \) rounds, a dishonest Prover will have successfully fooled the Verifier with probability at most \((1 - 1/n)^{nk} \leq 1/e^k\)

References: ashen

3 Vertex Cover

Protocol: to be repeated \(k \) times or until rejection.

1. Let \(S \) be the original vertex cover. Prover creates and commits to a random permutation \(\pi \) on the vertices of the graph \(G \), a copy of \(\pi(G) \), and \(S' = \{ \pi(x) | x \in S \} \), the permuted vertex cover.

2. Verifier randomly selects to either view the entire graph with the permutation \([\text{accepts iff the graph is } G]\), or the possible edges between pairs of vertices not in \(S' \) \([\text{accepts iff there are no edges}]\).

Zero-Knowledge: At each round, an honest Prover either shows the Verifier a random permutation of \(G \), or a bunch of non-edges between randomly named vertices. Clearly, the Verifier could simulate this by himself.

Completeness: Obviously the protocol is complete.

Partial Soundness: If \(G \) is correct and there are no edges between vertices not in \(S' \), then all edges in \(G \) must have at least one endpoint in \(S' \), so \(S' \) is a vertex cover for the permuted graph, and \(S \) is a vertex cover for the original graph. Thus, if the Prover does not actually know a good coloring, he can only satisfy one of the options at the time. Thus, in each round the Verifier will catch a dishonest Prover at least \(1/2 \) of the time. Thus, after \(k \) rounds, a dishonest Prover will have successfully fooled the Verifier with probability at most \(1/2^k \).

References: agavlova