11.1 Overview

1. Multiplication, Division and Exponentiation mod \(m \)
2. Fermat’s Little Theorem and Primality Testing

11.2 Counting Steps

11.2.1 Multiplication

Let us define \(M(n) \) as the number of steps it takes to multiply 2 \(n \)-bit numbers. This will be useful as a unit operation, when we consider other arithmetic operations.

In grade school, we learn an algorithm which gives \(M(n) = O(n^2) \).

In grad school, we learn an algorithm which gives \(M(n) = O(n^{1+\epsilon}) \) for arbitrary \(\epsilon \). Stephen Cook presented such an algorithm in his PhD Thesis (cf. http://cr.yp.to/bib/1966/cook.html). In the same work, Cook also showed that \(O(n) \) time cannot be achieved on a certain restricted computational model. Later, Schoenhage and Strassen found an \(O(n \log n \log \log n) \) algorithm.

It is an open question as to whether there exists an algorithm (in an unrestricted model) which gives \(M(n) = O(n) \).

11.2.2 Division

Note that division of two \(n \)-bit numbers also takes \(M(n) \) steps - any multiplication algorithm has a corresponding division algorithm.

11.2.3 Exponentiation

Exponentiation, perhaps unsurprisingly, takes longer.

11.2.3.1 First Illuminating example

Imagine you are asked to compute the \(m \)th power of 2, where \(m \) is an \(n \)-bit number. Of course, the answer is very simple:

\[
\begin{array}{c}
1 \\
0 \ldots 0 \\
m \text{ zeroes}
\end{array}
\]

But that could be \(2^n \) 0s! It would take an exponential time in the size of the input (which is \(n = \log m \)) just to write out the answer.
A nice way around this unfortunate observation to do exponentiation mod an n-bit number - now the input and output are the same size.

Claim: Given n-bit numbers a, b, m, we can compute $a^b \pmod{m}$ efficiently, i.e. in $p(n)$ time for some polynomial p. In fact, we will show exponentiation is $O(nM(n))$.

11.2.3.2 Second Illuminating Example

Let $b = 13$. In binary, $b = 2^{1101}$.

To compute $a^{1101} \pmod{m}$, we start with a raised to the power 1 (our input) and calculate a to higher exponents by perform repeated multiplications, reducing mod m after each operation.

\[
a^1 \rightarrow a^2 \rightarrow a^3 \rightarrow a^6 \rightarrow a^{12} \rightarrow a^{13}
\]

In binary, the exponents are

\[
1 \rightarrow 10 \rightarrow 11 \rightarrow 110 \rightarrow 1100 \rightarrow 1101
\]

11.2.3.3 General Algorithm

Set $X = a^1$. For i from 0 to $n - 1$:

1. Square X. $[X = X^2 \pmod{m}]$
2. If the ith bit of the binary expansion of b is a 1

 (a) Multiply by a. $[X = aX \pmod{m}]$

Since we are working mod m, X is always an n-bit number. Thus, each multiplication takes $M(n)$ steps. The loop is iterated n times, and there are at most two multiplications per iteration, so the runtime is $O(nM(n))$, as claimed above.

11.3 Fermat

Fermat thought about this. He came up with some cool beans. Now we will rediscover them.

Fermat noticed:

\[
\begin{array}{cccccccccccc}
2^3 \pmod{n} & 3 & 5 & 7 & 9 & 11 & 13 & 15 & 17 & 19 & 21 \\
\hline
2^2 \pmod{n} & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2
\end{array}
\]

The table seems to suggest, given natural numbers a, n,

\[
a^n \pmod{n} = a \quad \Leftrightarrow \quad n \text{ is prime}
\]

This would be a wonderful theorem to have, since it gives a polynomial time test for primality: given n, return PRIME iff $2^n = 2 \pmod{n}$. Unfortunately, only one direction is true.
11.3.1 \iff
Fermat showed the left implication with a clever application of the Binomial Theorem. Given prime \(p \),
\[
2^p \equiv_p (1+1)^p \equiv_p \sum_{k=0}^{p} \binom{p}{k}
\]
Notice that for positive \(i < p \), \(\binom{p}{i} = \frac{p!}{i!(p-i)!} \) has no factor of \(p \) in the denominator, but it has one in the numerator. We know that \(\binom{p}{i} \) is an integer, so its prime factorization will contain a \(p \) in it. That is, \(p | \binom{p}{i} \), which gives
\[
\binom{p}{i} \equiv \begin{cases}
1 \pmod{p} & i = 1 \\
0 \pmod{p} & 0 < i < p \\
1 \pmod{p} & i = p
\end{cases}
\]
Therefore \(2^p \equiv 2 \pmod{p} \) for \(p \) prime.

More generally, \((a + 1)^p = \sum_{k=0}^{p} a^k \binom{p}{k}\). By the same factoring argument, \(\binom{p}{k} \) is divisible by \(p \) for \(0 < k < p \), so \(a^k \binom{p}{k} \equiv 0 \pmod{p} \), and all those terms drop out of the sum. So
\[
(a + 1)^p \equiv a^p + 1 \pmod{p}
\]
To complete the proof, we need \(a^p + 1 \equiv a + 1 \pmod{p} \), or equivalently \(a^p \equiv a \pmod{p} \). We seem to be back where we started, but instead of trying to prove the theorem for \(a + 1 \), we have a smaller number \(a \). So, we can fix the proof by inducting on \(a \).

Equivalently, assume for contradiction that \(a^p \not\equiv a \pmod{p} \) for some natural \(a \). Then there is some smallest counterexample \(x \). \(x > 1 \), since \(0^p \equiv 0 \pmod{p} \) and \(1^p \equiv 1 \pmod{p} \). Thus \((x-1)^p \equiv x \pmod{p} \). However, above we showed \((x-1)^p \equiv x \pmod{p} \Rightarrow x^p \equiv x \pmod{p} \). Contradiction. Thus \(a^p \equiv a \pmod{p} \) for all natural \(a \).

11.3.2 \n\nThere is a very nice counterexample which happens to break lots of primality testing algorithms: 1729.

11.3.2.1 Historical Aside

Srinivasa Ramanujan was an Indian mathematical savant at the turn of the 20th century. His friend Hardy, also a famous mathematician, had this anecdote to relate:

“I remember once going to see [Ramanujan] when he was lying ill at Putney. I had ridden in taxi cab number 1729 and remarked that the number seemed to me rather a dull one, and that I hoped it was not an unfavorable omen. ‘No,’ he replied, ‘it is a very interesting number; it is the smallest number expressible as the sum of two cubes in two different ways.’”

In fact, \(1729 = 12^3 + 1^3 = 10^3 + 9^3 \).
11.3.3 Primality Testing

$$1729 = 7 \times 13 \times 19$$

but

$$2^{1729} \equiv 2 \pmod{1729}$$

Thus, 1729 breaks our naive primality test. However, perhaps we were unlucky in our choice of 2. Is it the case that for composite \(n \) there exists some \(a \) such that \(a^n \neq a \pmod{n} \)?

Unfortunately, no. It turns out that for all integer \(a \),

$$a^{1729} \equiv a \pmod{1729}$$

Numbers \(n \) for which \(a^n \equiv a \pmod{n} \) for any \(a \) are called pseudoprimes, or Carmichael numbers. 1729 happens to be the third smallest Carmichael number.

11.3.4 Beyond Fermat

We can consider variations on the exponentiation theme.

11.3.4.1 Notice that \(a^{p-1} \equiv 1 \pmod{p} \) for \(p \) prime and \(a \) coprime with \(p \). In fact, this is an equivalent form of Fermat’s Little Theorem.

Given \(a^p \equiv a \pmod{p} \), if \(a \) is coprime with \(p \) then \(a^{-1} \) exists and we can multiply on both sides by \(a^{-1} \) to get \(a^p \equiv a \pmod{p} \).

Given \(a^{p-1} \equiv 1 \pmod{p} \) for \(a \) is coprime with \(p \), then we can multiply on both sides by \(a \) to get \(a^p \equiv a \pmod{p} \) for \(a \) coprime with \(p \). For \(a \) not coprime with \(p \), \(a \) must be a multiple of \(p \), so that \(a^p \equiv 0 \equiv a \pmod{p} \).

So, again, all primes will pass this test, but not all numbers which pass this test are primes. Particularly, \(n = 1729 \) gives \(2^{1728} \equiv 1 \pmod{1729} \)

11.3.4.2 If \(n \) is odd, then \((n-1)/2 \) is an integer. Let’s look at \(2^{(n-1)/2} \pmod{n} \). If \(n \) is prime, then we know that \((2^{(n-1)/2})^2 \equiv 1 \pmod{n} \), so \(2^{(n-1)/2} \) is either 1 or \(-1\) modulo \(n \).

But, once again,

$$2^{1728/2} = 1 \pmod{1729}$$

However, notice that 1728 is not just divisible by 2, it is in fact divisible by \(2^6 \). Can we do something with \(2^{1728/64} \pmod{1729} \)? Our very own Gary Miller pursued this line of thought and eventually came up with the famous Miller-Rabin probabilistic primality test, which we will talk about next time.