Who to Blame: Ryan. That is, tell him if you find errors, and ask him for clarifications.

Rules: As usual, please cite all sources that you may use.
For the first two questions, you need not prove your answer. A reference suffices.

1. True or false? For all primes \(p \) and integers \(e \geq 1 \), \(\mathbb{Z}_p^* \) has a generator.

2. True or false? For all odd primes \(p \) and integers \(e \geq 1 \), \(\mathbb{Z}_p^* \) has a generator.

3. Give a polynomial time algorithm that takes a number \(N \) as input, and outputs “yes” if and only if \(N = p^e \) for some prime \(p \) and positive integer \(e \).

4. Let \(n \) be a positive integer. Recall that the prime density function, \(\pi(n) \), is defined as the number of prime numbers less than or equal to \(n \). The Prime Number Theorem states that \(\lim_{n \to \infty} \frac{\pi(n)}{n/\log n} = 1 \). Here, you will prove a weaker statement: \(\pi(n) = \Omega(n/\log n) \). Sophisticated number theory is not required to prove this.

 (a) Let \(p \) be a prime in the following. Show that \(p \) divides \(n! \), at least \(\sum_{i=1}^{\infty} \left\lfloor \frac{n}{p^i} \right\rfloor \) times.

 Hint: First, count the numbers between 1 and \(n \) that can be divided by \(p \) at least once. Then count the number that can be divided by \(p \) at least twice, and so forth.

 (b) Define \(r(p) \) as the natural number such that \(p^{r(p)} \leq 2n < p^{r(p)+1} \).

 Prove that \(p \) does not divide \(\binom{2n}{n} \) more than \(r(p) \) times.

 Conclude that

 \[
 2^n \leq \binom{2n}{n} \leq \prod_{\text{prime } p \leq 2n} p^{r(p)} \leq (2n)^{\pi(2n)}.
 \]

 (c) Prove that \(\pi(n) \geq \frac{n}{2 \log_2 n} \).