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Summary. Coordination of large groups of agents or robots is starting to reach
a level of maturity where prototype systems can be built and tested in realistic
environments. These more realistic systems require that both algorithmic and prac-
tical issues are addressed in an integrated solution. In this chapter, we look at three
implementations of large-scale coordination examining common issues, approaches,
and open problems. The key result of the comparison is that there is a surprising
degree of commonality between the independently developed approaches, in partic-
ular the use of partial, dynamic centralization. Conversely, open issues and problems
encountered varied greatly with the notable exception that debugging was a major
issue for each approach.

1.1 Introduction

Coordinating large groups of intelligent robots to perform a complex task
in a complex environment requires meeting a range of challenges in an inte-
grated solution. These challenges range from well-known algorithmic issues,
e.g., managing the computational complexity of task and resource allocation,
to more practical issues, e.g., initialization and deployment of a large num-
ber of robots. In the past few years, a small number of systems have been
developed that are capable of demonstrating real coordination between large
numbers of robots in realistic domains. While extensively leveraging the large
body of previous work, these systems required new techniques to deal with the
practical complexity of coordinating a large group of robots. In this chapter,
we look at three successful approaches to coordination to find commonalities
and differences in the techniques used. The aim is to identify ideas that gen-
eralize across approaches as well as issues that appear to come up regardless
of the approach used.

Each of the applications and approaches described in this chapter involves
at least 100 completely unselfish and cooperative group members. One ap-
plication required coordination of simulated agents for a complex task, one
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involved 100 robots on an exploration and, tracking task and another involved
hundreds of sensors for a montoring task. The group members are relatively
homogeneous, although there is always some heterogeneity due to location.
Thus despite being relatively homogeneous in design, the agents were not
always easily interchangeable. The complex tasks on which the teams were
working were relatively decomposable, although constraints (either resource
or spatial or both) existed between the decomposed subtasks. In all cases,
the coordination algorithms had to deal with many of the issues faced by
any multi-agent system, as well as complications due to scale. Since the ap-
plications involve at least somewhat realistic environments, the approaches
were required to address a full spectrum of issues, including many practical
challenges often ignored in the multiagent literature. Some of these practical
challenges are well known, e.g., dealing with lossy communication or building
reliable software, while others were more novel, e.g., working out how 100
robots can enter a building in a reasonable amount of time.

While the approach to each application was developed independently of
the others and was underpinned by a diverse set of philosophies and con-
straints, there was a surprising amount of commonality in both the solutions
and the open problems. Two specific, major commonalities were of particular
interest. The first was that each approach used some form of dynamic, partial

centralization to reduce the overall complexity. In particular, some decision-
making responsibility for a small group of agents was dynamically assigned to
an agent particularly able to make those decisions. The form of the central-
ization varied greatly, from dynamic subteams to dispatchers to mediation.
In each case, only a small subset of the team was involved in the central-
ization, and the agents involved, as well as the “center”, were not chosen in
advance. The reason for this commonality appears to stem from a need to
balance the complexity of key algorithms and the practical limitations of time
and communication resources. In situations where coordinated decision mak-
ing involved a large percentage of the group, developers resorted to various
heuristics for controlling resource requirements, and when a small percentage
of the group was involved, partial centralization was used. Although the rea-
son for it is unclear, it is noteworthy that no optimal completely distributed
algorithms were used, perhaps because in cases where they were applicable
partial centralization was more efficient.

Most likely related to the dynamic localized centralization, the second no-
table commonality between the three approaches was that the coordination
was neither simple and relying on emergent properties nor highly structured
with top-down guidance. While the lack of top-down structure was at least
partially due to the decomposibility of the task, there was more structure
to the coordination than the task, indicating that the coordination was not
simply designed to mirror the task. Interestingly, none of the approaches were
inspired by any particular organizational theory, human or biological. Struc-
ture limited the decisions that could be made by an individual, including
who that individual could communicate with about what, what tasks the in-
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dividual could perform, and protocols for making coordinated decisions. For
example, in one of the approaches, the notion of a subteam was strictly de-
fined and carried certain responsibilities that were often not required for best
coordinated behavior, but simplified the possible organizations that could oc-
cur. Although not explicit in any of the designs, it appears that each approach
carefully balanced imposed structure for making the coordination intelligible
to a human and flexibility for allowing the group to find the best way to
complete a task. The need for intelligibility was key when programming, test-
ing, deploying and improving the system, but the additional structure limited
the potential of the team. Future development tools may open the possibility
to decrease the amount of structure and, thus, increase the potential of the
group.

In contrast to the high degree of commonality between the approaches
used, the problems encountered and the major open problems were varied.
In two of the approaches, determining appropriate parameters for heuristics
was identified as a problem. In two approaches, there was unwanted emergent
behavior. In one approach, sharing information was a problem. It does not
appear that any of the approaches are immune to the problems encountered
by the others, only that the specific problems were not induced by the specific
applications. This diversity of problems and open issues is especially inter-
esting since the approaches had so much in common. However, it is unclear
what to conclude from this, since one might come to the mutually exclusive
conclusions that the basic approach was poor and problems manifested them-
selves in different ways or that the approach was fundamentally good and
time was spent on more detailed issues. More applications are required for
a definitive conclusion. In each approach, debugging was found to be a ma-
jor difficulty with only the most rudimentary support available for debugging
extremely complex, distributed applications. The most stunning evidence of
this problem is that all approaches reported that major bugs went unnoticed
for extended periods of time, before being discovered by chance. The bugs
went unnoticed because the overall behavior was not accurately predicted in
advance, so disappointing performance was attributed to causes other than
faulty software.

In the remainder of this chapter, we briefly describe the way each of
the three approaches addresses a variety of problems. By showing in detail
the commonalities and differences, we provide a fair comparison of the ap-
proaches. Finally, open, important problems, identified in the development of
the systems, are described to help shape the research agenda for large-scale
coordination.

1.2 Applications and Assumptions

Each of the applications involves at least 100 cooperative entities and has
been tested either in hardware or realistic simulation of hardware. Although
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specific communication restrictions differ, communication is identified as a
much bigger limitation than computation. None of the applications requires
optimal performance; instead, the focus is on doing a large task robustly.

1.2.1 Teamwork and Machinetta

Machinetta software proxies are used to develop teams where the members
are assumed to be completely cooperative and willing to incur costs for the
overall good of the team [20]. Typically, team members will be highly hetero-
geneous, ranging from simple agents and robots to humans. When a group of
agents coordinates via teamwork they can flexibly and robustly achieve joint
goals in a distributed, dynamic and potentially hostile environment [7, 9]. Key
teamwork algorithms have evolved from an extensive body of work on both
the theory and practice of teamwork [23, 8, 3]. Teams of heterogeneous actors
have potential applications in a wide variety of fields, ranging from support-
ing human collaboration [1, 22] to disaster response [16] to manufacturing [9]
to training [23] to games [10]. To date we have demonstrated teams of 500
software agents [21], in both a UAV simulation [19] and a disaster response
simulation, but teams of as many as 200,000 agents are envisioned.

Given the complexity of the domains, tasks, and heterogeneity of the team,
we typically assume that optimality is not an option. Instead, we look for sat-
isficing solutions, that can achieve the goals rapidly and robustly. The assump-
tion is that doing something reasonable is a very good start. For example, in
a disaster response domain, we assume that it is better to have fire trucks
on reasonable routes to fires, than to delay departure with computationally
expensive optimization. While the team will be able to leverage reasonably
high bandwidth communication channels, we assume that the bandwidth is
not sufficiently high to allow centralized control. The team will need to achieve
complex goals in a complex, dynamic domain. We assume that some decom-
position of the complex task into relatively independent subtasks can take
place.

1.2.2 Centibots Dispatching

Funded by DARPA, the Centibots project is aimed at designing, imple-
menting, and demonstrating a computational framework for the coordination
of very large robot teams, consisting of at least 100 small, resource-limited
mobile robots (Centibots, see figure 1.1), on an indoor search-and-rescue
task. In this project, communication was limited and unreliable, and any co-
ordination mechanisms had to deal with the limitations. There are two types
of agents in the Centibots system; hence, heterogeneity is not an issue. Simi-
larly, optimality is infeasible, so having a reactive, “good enough” system was
the primary aim.

In the scenario, the Centibots are deployed as a search-and-rescue team
for indoor missions. A first set of mapping-capable Centibots surveys the



1 Comparing Three Approaches to Large-Scale Coordination 5

Fig. 1.1. 100 Robots used during the January 2004 evaluation.

area of interest to build and share a distributed map highlighting hazards,
humans, and hiding places. A second wave of robots, with the capability of
detecting an object of interest (e.g. biochemical agents, computers, victims),
is then sent. The key goal of the second wave is to reliably search everywhere

and report any findings to the command center. These robots are then joined
by a third wave (possibly the same robots used during the second wave) of
tracking robots that deploy into the area, configuring themselves to effectively
sense intruders and share the information among themselves and a command
center [11].

Communication is done using an ad-hoc wireless network, which has a
maximum shared bandwidth of 1 Mpbs. Communication is not guaranteed
because as the robots move to achieve their own missions, links between the
agents are created and lost. Because the robots fail, break, and get lost, plan-
ning the entire mission ahead of time is not possible. Essentially, there is no
chance that all the robots will finish the mission. In addition, resources (i.e.
robots) and goals can be added, removed, or disabled at any time, making an
adaptable system crucial.

1.2.3 Cooperative Mediation

Scalable, Periodic, Anytime Mediation (SPAM) [12] is a cooperative-mediation-
based algorithm that was designed to solve real-time, distributed resource
allocation problems (RTDRAP). SPAM was developed to coordinate the ac-
tivities of hundreds to thousands of agents that controlled sensors within a
large sensor network as part of the DARPA Autonomous Negotiating Teams
(ANTS) program (see figure 1.2).

In this project, sensors were randomly placed in the environment and had
to coordinate their internal schedules in order to discover and track moving
targets. Each of the sensor platforms had three Doppler-radar-based sensor
heads capable of returning amplitude and frequency shift information for ob-
jects within their 20-foot range and 120-degree viewable arc. Because of this,
multiple, temporally coordinated measurements from different sensors within
the network were needed in order to triangulate the precise position of a target
at any given time. In addition, each of the sensor platforms was controlled by
a Basic stamp micro-controller that was capable of processing the incoming
sensor data from only one head at a time. These two factors when combined
together formed the basis of a difficult, distributed resource allocation prob-
lem that was further complicated by dynamics created by the movement of
the targets.

Adding to the complexity of this problem, communications varied from 100
Mbps TCP-based wired networks to 14.4 kbps half duplex, RF-based, mul-
tichannel wireless communications. In the latter, message passing was very
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Fig. 1.2. Researchers work on a demonstration involving 36 sensors and 3 mobile
targets.

unreliable and loss rates of 50% were not uncommon. The communication
restrictions combined with the real-time coordination needs made complete
centralization out of the question and traditional distributed techniques inad-
equate.

SPAM has been tested in real-world hardware environments with 36 sen-
sors and in simulated environments with more than 500 sensors.

1.3 Key Algorithms and Principles

Although distinct approaches are used, i.e., teamwork, hierarchical dispatch-
ing and cooperative mediation, each approach imposes some limited, flexible
structure on the overall group. Notice that a central aim of each approach
is to efficiently, robustly, and heuristically allocate and reallocate tasks and
resources.

1.3.1 Machinetta and Teamwork

A key principle in teamwork is that agents have both models of teamwork
and models of other team members [21]. The models are used to reason about
which actions to take to achieve team goals. Having explicit models with
which the agents can reason leads to more robustness and flexibility than fixed
protocols. The key abstraction in our implementation of teamwork is a Team
Oriented Plan, which breaks a complex joint activity down into individual
roles, with constraints between the roles [18]. Typically, a large team will
be executing many team-oriented plans at any time. Dynamically changing
subteams form to execute each of the plans. Small amounts of communication
occur across subteams, to ensure that sub-teams do not act at cross purposes
or duplicate efforts.
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Scalable algorithms required to perform the teamwork were designed with
two key ideas in mind. First, we use probabilistic models of team activity
and state to inform key algorithms. This actually leverages the size of the
team because the probabilistic models tend to be more accurate with a large
number of agents, since local variation gets canceled out more effectively. The
teamwork algorithms are designed to leverage the probabilistic models to make
very rapid decisions that are likely to be at least “reasonable”. Second, we note
that when there are very many team members, Murphy’s Law1 applies, simply
because everything happens so many times. Creating efficient, lightweight
software that is simple enough to be implemented reasonably quickly, yet
robust enough to be used in teams with thousands of agents, is as much a
function of the algorithms as it is of the actual code. Significant emphasis
must be placed on designing algorithms that are sufficiently simple to be
straightforward to implement in a very robust manner. Specifically, most key
algorithms use tokens to encapsulate “chunks” of coordination reasoning [19].
A good example of these principles is in our algorithm for ensuring that the
team is not working on conflicting plans. That algorithm uses tokens, for
robustness, and the associates network to ensure, with high probability, that
the team is not working at cross purposes.

These two principles are embodied in the role allocation process that uses
a probabilistic model of the current capabilities and tasks of the team to
calculate a threshold capability level that a team member performing a role
would have in a good overall allocation, and then uses a token that moves
around the team until an available team member is found with capability
above the threshold [5].

1.3.2 Centibots Dispatching

Once the Centibots have produced a map as a bitmap image, an abstraction is
needed so search goals can be created to ensure that all space is searched. The
abstraction is done by building a Voronoi diagram from the map, and then the
Voronoi skeleton is abstracted into a graph. This abstraction is solely based
on the sensor capabilities of a robot. Once we have all the goals generated,
coordination is required to allocate them to a pool of robots.

To coordinate the robots’ activities, we use a hierarchical dispatching sys-
tem, where robots can register with multiple dispatching agents, one of which
is considered “preferred”. Teams of robots are formed by a commander, and
for each team, a manager or dispatcher is selected. The manager selection is
unimportant as known solutions can be used. The commander assigns a set
of goals to each team and the teams’ dispatchers assign these to individual
robots. When a robot has finished its assigned goals, it notifies the dispatcher,
making itself available, and asks for a new goal.

A key problem for Centibots was the strategy used by a dispatcher to
assign goals to robots. Since all robots started from the same position, the

1 Anything that can go wrong will go wrong.
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problem is to minimize the search time. This allocation is in theory similar to
a multiple traveling salesman problem except that there is no a priori notion
of how many salesmen you might have, and a salesman can fail at any time
during the traveling. Given these constraints, we found, after trying several
techniques, that the best strategy for the dispatcher is to send the robot the
farthest away for the first goal and then minimize its movement by taking the
closest goals after the first one.

1.3.3 Cooperative Mediation

SPAM works by having one or more agents concurrently take on the role of
mediator. An agent decides to become a mediator whenever it identifies a
conflict with a neighbor (both scheduled a sensor for use at the same time) or
it recognizes a suboptimality in its allocation (it could achieve higher utility if
it changed its sensor assignment). As a mediator, an agent solves a localized
portion (or subproblem) of the overall global problem. In SPAM, this sub-
problem entails the agents with which the mediator shares sensor resources.
As the problem solving unfolds, the mediator gathers preference information,
from the agents within the session, which updates and extends its view and
overlaps the context that it uses for making its local decisions with that of the
other agents. By overlapping their context, agents understand why the agents
within the session have chosen a particular value that allows the system to
converge on mutually beneficial assignments.

This technique represents a new paradigm in distributed problem solving.
Unlike current techniques that attempt to limit the information the agents
use to make decisions in order to maintain distribution [28, 27], SPAM and
more generally cooperative mediation centralize portions of the problem in
order to exploit the speed of centralized algorithms.

1.4 Key Novel Ideas

New ideas were required to overcome weaknesses in the principles as ap-
proaches were scaled from small numbers of agents to the large numbers
needed for the coordination.

1.4.1 Machinetta and Teamwork

There are a variety of novel ideas in the Machinetta proxies. To maintain co-
hesion and minimize conflicted effort, the whole team is connected via a static,
scale free associates network [21]. As well as the obligation to communicate
information to members of its dynamically changing subteam, as required by
teamwork, an agent must keep its neighbors in the associates network ap-
praised of key information. The network allows most conflicted or duplicated
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efforts to be quickly and easily detected and resolved. Movement of informa-
tion around the team, when team member(s) requiring the information are not
known in advance, also leverages the associates network. Every time informa-
tion is communicated, the agent receiving the information updates a model of
where it might send other information, based on information received to date
[26]. Because of a phenomenon known as small worlds networks, information
passed around a network in this manner can be efficiently sent to the agent(s)
requiring the information.

Allocating roles in team-oriented plans to best leverage the current skill
set of the team is accomplished by a novel algorithm called LA-DCOP [5].
LA-DCOP extends distributed constraint optimization techniques in several
ways to make it appropriate for large, dynamic teams. Most important, LA-
DCOP uses probabilistic models of the skills of the team and the current
roles to be filled to estimate the likely skill of an agent filling a role in a
“good” allocation. To take advantage of human coordination reasoning, when
it is available, we represent all coordination tasks explicitly as coordination

roles and allow the proxy to meta-reason about the coordination role [20]. For
example, in a disaster response domain, there may be a role for fighting some
particular fire that no firefighter is able to fill. The proxies can recognize this
and send the role to some person and allow that person to determine what
action to take.

1.4.2 Centibots

The hierarchical dispatching model offers two key interesting qualities. The
communication is minimal since the dispatcher is eavesdropping on the status
message. Assuming the status message is required, then using a centralized
dispatching will outperform any distributed methods. The drawback is the
need of communication between the team of robots and the dispatcher. We
assume that the dispatcher is a network service that resides physically any-
where on the network. The dispatcher can be running on any team member,
and would require only local communication. The second quality is a natural
hierarchy can be created to handle a large number of robots. In this configu-
ration, we could have a hierarchy of dispatchers, each responsible for an area
of the map, using a subteam of robots. Each robot can already subscribe to
several dispatchers. If a dispatcher has completed all its goals, then it can re-
lease its assets for other dispatchers to use, achieving a load-balancing system.
Like the SPAM system, the Centibots architecture leverage the power of the
mediation by centralizing a sub portion of the problem.

1.4.3 Cooperative Mediation

The key principle that allows SPAM to be scalable is the heuristic restriction
of the size of the subproblem that the mediators are able to centralize. Media-
tors in SPAM are only allowed to conduct sessions including agents with which
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they directly share resources. Although this prevents the search from being
complete, in all but the most tightly constrained problem instances, this tech-
nique limits the amount of communication and computation that must occur
within any single mediator. The downside to this heuristic approach, how-
ever, is that the mediators have less information and are often unaware of the
consequences of their actions on other agents. To combat this effect, SPAM
incorporates the use of conflict propagation and conflict dampening.

As the name implies, conflict propagation occurs whenever a mediator
causes conflicts for agents that are outside of one of its sessions. It easy to
envision this as the mediator pushing the conflicts onto agents over which it
has no control (or responsibility). The key goal of the propagation is to find
regions within the global resource problem that are under-constrained and
can absorb the conflict. The actual propagation occurs when one the agents
that has the newly introduced conflict takes over the role of mediator. These
agents can then either absorb the conflict (by finding a satisfying assignment
to their subproblem) or can push the conflict onto other agents, which may
push it even further.

It is easy to see that conflict propagation alone would have disastrous
consequences if it were not for conflict dampening. Conflict dampening is
very similar to the min-conflict heuristic presented in [13]. When an agent
mediates, it gathers information about the impact of particular assignments
from each of the agents involved in the session. This allows the mediator
to choose solutions that minimize the impact on agents outside of its view.
Overall the effects of conflict propagation and dampening can be visualized
as ripples in a pond that eventually die down because of the effects of friction
and gravity.

SPAM also incorporates a number of resource-aware mechanisms that pre-
vent it over-utilizing communication. In particular, SPAM monitors the state
of the communications links between itself and other agents and when it no-
tices that one of the agents in the session has become overburdened, it is
dropped from the session. In addition, if an agent notices that it has become
a communication hotspot, then it avoids taking the role of mediator until the
situation resolves itself. Overall, these mechanisms allow SPAM to tradeoff
utility for scalability of communications.

1.5 Software

We describe the major pieces of technology, specifically software, that are used
for the coordination in each of the approaches.

1.5.1 Machinetta and Teamwork

The teamwork algorithms are encapsulated in domain-independent software

proxies [17]. Each member of the team works closely with its own proxy. The
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proxy handles all the routine coordination tasks, freeing the agent to focus
on specific domain-level tasks. The proxy communicates with the domain-
level agent (or robot or person) via an agent-specific, high-level protocol. Ad-
justable autonomy reasoning is applied to each decision, allowing either the
agent or the proxy to make each coordination decision [20]. Typically, all deci-
sions are made by the proxy on behalf of agents or robots, but when the proxy
is working with a person, key decisions can be transferred to that person. The
current version of the proxies is called Machinetta and is a lightweight Java
implementation of the successful SOAR-based TEAMCORE proxies [21]. The
proxies have been successfully tested in several domains including coordina-
tion of UAVs, disaster response, distributed sensor recharge, and personal
assistant teams. The proxy code can be freely downloaded from the Web. The
application-dependent aspects of the proxies, specifically the communication
code and the interface to the agents, are implemented as “pluggable” modules
that can be easily changed for new domains, thus improving the applicability
of the proxies. The proxy software is freely available on the Internet.

1.5.2 Centibots

The Centibots software makes an extensive use of the Jini [24] architecture.
Each robot and each key algorithm is a network service that registers, ad-
vertises and interacts independently of its physical location. We have services
like the map publisher that aggregates data from the mappers and publishes a
map for the other robots, and like the dispatcher that allocates tasks to robots
or even the user interface. The result is a very modular, scalable infrastruc-
ture. Each robot has its own computer where it runs localization, navigation,
path planning, and vision processing algorithms.

1.5.3 Cooperative Mediation

The SPAM protocol is implemented both within simulation and as part of
more complex agents designed to work on sensor hardware. The protocol
itself is composed of several finite state machines (FSMs) that are written
in Java. Each state in the FSM encapsulates a nondecomposable decision
point within the protocol. Transitions between states are event driven and
allow the protocol to specify state transitions based on time-outs, message
traffic, specific execution conditions, and so on. This allows the protocol to
be time and resource aware, modifying its behavior based on the current
environmental conditions. SPAM is currently being considered for use in a
number of domains, including real-time airspace deconfliction and the control
of sensors for severe weather tracking.
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1.6 Key Unexpected Challenges

Challenges were encountered during development that were not expected at
the outset. Each approach ran into different, unexpected problems, ranging
from sharing information to controlling oscillations.

1.6.1 Machinetta and Teamwork

Two main unexpected challenges occurred during the development of large
teams. First, it was often the case that some team member had information
that could be relevant to some other member of the team, but did not know
to which other team member the information was relevant. For example, in
a disaster response domain, an agent may get information about chemicals
stored in a particular factory, but not know which firefighters will be attend-
ing that fire. Restricting knowledge of current activities to within a subteam
provides scalability but reduces the ability of other team members to pro-
vide potentially relevant information. Previous approaches, including black-
boards, advertisement mechanisms and hierarchies, do not immediately solve
this problem in a manner that can effectively scale. To address this problem
we made use of the fact that the associates network connecting team members
had a small worlds property and allowed an agent to push information to its
neighbor most likely to be able to make use of that information or know who
would [26].

The second unexpected problem encountered was that there were many
algorithm parameters that interact with one another in highly nonlinear ways.
Moreover, slightly different situations on the ground require substantially dif-
ferent configuration of the algorithm parameters. Determining appropriate
values for all parameters for a given domain is as much art as science and
typically requires extensive experimentation. When the situation changes sig-
nificantly at runtime, an initially appropriate configuration of algorithm pa-
rameters can end up being poor. We are currently developing techniques that
use neural networks to model the relationships between parameters and assist
the user in finding optimal settings for specific performance requirements and
tradeoffs.

1.6.2 Centibots Challenges

The two main challenges we had to face are the instability of the communi-
cations and the number of goals to be assigned per agent. In this project, the
communication was coordinated assuming a very conservative range for the
wireless network. Unfortunately, we have encountered more than once parts of
buildings where this conservative distance was not working. In this case, any
robot that enters this communication dead zone will not be able to contact
the centralized dispatcher. Our solution was to have the dispatcher living on
close-by robots , which was a good improvement but did not completely solve
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the problem. As a result, we had to implement a low-level behavior where
the robot, after waiting a known timeout, will return to its original starting
position if it could not contact the dispatcher. In this case, at least we would
retrieve it.

The second challenge was to determine the number of goals to assign to
a robot. There was no way to know a priori how many robots would be
part of the mission; therefore, a fair division of the number of goals was not
possible. In section 1.5.2 we have shown that the most effective dispatching
would require an assignment of several close-by goals; the key question is how
many. Since the number of robots assigned to the mission is unknown (robots
assigned will break and the commander may reassign others in the middle
of the mission), the solution we use is an empirical function. The number of
goals assigned varies (one to seven) depending on the number of goals left to
be assigned. At the end of each run we collect the number of goals fulfilled
by each robot and we collect each ending time; if there is a large variation
(meaning some robots were under-utilized and others were overutilized) we
vary the total number of goals to be assigned.

1.6.3 Cooperative Mediation

Because the SPAM protocol operates in a local manner, a condition known as
oscillation can occur. Oscillation is caused by repeated searching of the same
parts of the search space because of the limited view that the agents maintain
throughout the problem solving process.

During the development of the SPAM protocol, we explored a method in
which each mediator maintained a history of the sensor schedules that were
being mediated whenever a session terminated. By doing this, mediators were
able determine if they previously may have been in a state that caused them to
propagate in the past. To stop the oscillation, the propagating mediator low-
ered its solution quality to force itself to explore different areas of the solution
space. It should be noted that in certain cases oscillation was incorrectly de-
tected by this technique, which resulted in having the mediator unnecessarily
accept a lower-quality solution.

This technique is similar to that applied in [14], where a nogood is an-
notated with the state of the agent storing it. Unfortunately, this technique
does not work well when complex interrelationships exist and are dynam-
ically changing. Because the problem changes continuously, previously ex-
plored parts of the search space need to be constantly revisited to ensure that
an invalid solution has not recently become valid.

In the final implementation of the SPAM protocol, we allowed the agents
to enter into potential oscillation, maintaining almost no prior state from
session to session and relied on the environment to break oscillations through
the movement of the targets, asynchrony of the communications, timeouts,
and so on.
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1.7 Open Problems

As with the unexpected problems, each approach has different open prob-
lems. Even though most of the problems appear to be reasonably approach
independent, e.g., traffic control in Centibots, neither of the other approaches
has specific solutions to that problem, suggesting that the problems may be
general.

1.7.1 Machinetta and Teamwork

Despite its successes, Machinetta has some critical limitations. Most criti-
cally, Machinetta relies on a library of predefined team-oriented plan tem-
plates. While some constructs exist for expressing very limited structure in
the plans, these constructs are hard to use. In practice, to write successful
Machinetta plans, the domain must be easily decomposable into simple, rela-
tively independent tasks. The ability to write and execute more complex plans
is a pressing problem.

While the probabilistic heuristics used by Machinetta are typically effective
and efficient, occasionally an unfortunate situation happens and the resulting
coordination is very poor. Sometimes the coordination will be unsuccessful or
expensive because the situation is particularly hard to handle, but sometimes
it will be that the particular heuristic being used is unsuited to the specific
situation. Critically, the agents themselves cannot distinguish between a do-
main situation that is difficult to handle and a case where the coordination is
failing. For example, it is difficult for a team to distinguish between reasonable
role allocation due to a dynamic and changing domain and “thrashing” due
to a heuristic not being suited to the problem. While individual problems,
such as thrashing, can be solved on an ad hoc basis, the general problem of
having the team detect that the coordination is failing is important before
deploying teams. If such a problem is detected, the agents may be able to
reconfigure their algorithms to overcome the problem. However, as mentioned
above, determining how to configure the algorithms for a specific situation is
also an open problem.

1.7.2 Traffic Control in Centibots

Linked to the goal assignment, traffic control for several dozen robots in a
small environment is a huge challenge. The assignment should take into con-
sideration the schedule in which each robot will do its tasks to prevent dead-
locks. For a robot, a doorway is a very narrow choke point, and only one robot
can go through at one time. When more than two robots try to enter and exit
the same room at the same time, you have a conflict. Currently we are not
managing this problem; luck and local avoidance is how we solve it. We have
seen in our dozens of real-life experiments some conflicts becoming literally
traffic jams and blocking permanently one access of an area. The only way to
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reason about the choke point is as resource and solve the conflict during the
assignment by using a method such as SPAM.

1.7.3 Cooperative Mediation

The most interesting open questions for the SPAM protocol deal with the
when, why, and whom for extending the view of the mediators given different
levels of environmental dynamics and interdependency structures. Because
the optimality and scalability of the protocol are strongly tied not only to
the size, but to the characteristics of the subproblem that the mediators cen-
tralize, a detailed study needs to be conducted to determine the relationship
between these two competing factors. Some work has already been done that
preliminarily addresses these questions. For example, the whom and why to
link questions were in part addressed in the texture measures work of Fox,
Sadeh, and Baycan [6]. In addition, recent work on phase transitions in CSPs
[2, 4, 15] in part addresses the question of when. It is clear that a great deal
of work still needs to be done.

1.8 Evaluation and Metrics

We agree that evaluating the algorithms and the metrics used to measure per-
formance is an immature and difficult science. Clearly, useful and comparable
metrics will need to be developed, if sensible comparison is to be performed.

1.8.1 Machinetta and Teamwork

Evaluating teamwork is very difficult. While success at some particular
domain-level task is clearly a good sign, it is a very coarse measure of co-
ordination ability, and thus it is only one aspect of our evaluation. To ensure
that we are not exploiting some feature of the domain when evaluating the
algorithms, we have endeavored to use at least two distinct domains for test-
ing. Moreover, typically it is infeasible to test head to head against another
approach; hence, we are limited to varying parameters in the proxies. For the
larger teams, a single experiment takes on the order of an hour, severely lim-
iting the number of runs that can be performed. Unfortunately, because of
the sheer size of the environment and the number of agents, there tends to be
high variation in performance, implying that many runs must be performed
to get statistically significant results. Even determining what to measure in
an experiment is a difficult decision. We measure things like number of mes-
sages, number of plans created, roles executed and scalability, although it is
not clear how some of these numbers might be compared to other algorithms.
Typically, we measure global values, such as the overall number of messages
rather than local values such as the number of messages sent by a particular
agent.
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Since there are no modeling techniques available for mathematically an-
alyzing the algorithms’performance, we have developed a series of simple
simulators that allow specific algorithms to be tested in isolation and very
quickly. These simulators typically also allow comparison against some other
algorithms. Currently, we have simple simulators for role allocation, subteam
formation, and information sharing. Performing very large numbers of exper-
iments with these simulators, we are able to understand enough about the
behavior of the algorithms to perform much more focused experimentation
with the complete Machinetta software.

1.8.2 Centibots Evaluation

This project was driven by the challenge problem set by DARPA and in this
sense the evaluation was independently done by a DARPA team that has
measured the behaviors of the Centibots software to solve the search-and-
rescue mission, not purely the coordination. For a week in January 2004, the
Centibots were tested at a 650m

2 building in Ft. A.P. Hill, Virginia. They
were tested under controlled conditions, with a single operator in charge of
the robot team.

For searching, the evaluation criteria were time to locate object of interests
(OOIs), positional accuracy, and false detections. There were four evaluation
runs, and the results, in the Table 1.1, show that the team was highly effective
in finding the object and setting up a guard perimeter. Note that we used
very simple visual detection hardware and algorithms, since we had limited
computational resources on the robots – false and missed detections were a
failure of these algorithms, rather than the spatial reasoning and dispatching
processes.

Run Mapping Time Map Search Search Time Position Error /
Area Robots False Pos Topo Error

1 22 min 96% 66 34 min / 0 11 cm / none
2 26 min 97% 55 76 min / 1 24 cm / none
3 17 min (2 robots) 95% 43 16 min / 0 20 cm / none
4 19 min (2 robots) 96% 42 Missed / 2 NA

Avg. 21 min 96% 51 30 min / 0.75 14 cm / none

Table 1.1. Results of the four evaluation runs.

The results were not focused on the coordination portion but measured the
overall performance of the system to solve the search-and-rescue mission. As
explained in the next section, extracting meaningful data from such a system
is not an easy task.

1 Caused by a misconfigured tracking filter, fixed before the next run.
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1.8.3 Cooperative Mediation

The SPAM protocol was implemented and tested within a working sensor
network, but most of the development and analysis of the protocol was done
in simulation.

The primary metrics used to measure SPAM were the number of targets
being effectively tracked during a fixed period of time, the number of messages
being used per agent, and the social utility being obtained. For this problem,
social utility is defined as the sum of the individual utilities for each target
with penalties assigned for ignoring objects.
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Fig. 1.3. Percentage of optimal utility for SPAM and greedy solutions.

We implemented two alternative methods for comparison. The first, which
are called greedy, involved having each agent request all possible sensing re-
sources to track its target, potentially overlapping with the requests of other
agents. The utility calculation treated these overlaps as subdivided sensor
time for each of the tracks. We also implemented algorithms to calculate the
optimal utility and optimal number of tracks. Because these algorithms took
so long to find the optimal solution however, we were forced to restrict the
size of the problems to less than 10 targets. Overall, SPAM performed nearly
optimally under various amounts of resource contention (see figure 1.3). In-
dependent analysis of the protocol was also conducted in [25], which verified
these findings.

1.9 Testing and Debugging

Testing and debugging of the approaches is perhaps the most unexpectedly
difficult area. Despite the sophisticated basic approaches and the relatively
straightforward algorithms used, debugging always degenerated into a process
of pouring over logfiles, which is clearly inappropriate if such systems are to
be widely used.
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1.9.1 Machinetta and Teamwork

Testing and debugging Machinetta teams is extremely difficult. Probabilis-
tic reasoning and complex, dynamic domains lead to occasional errors that
are very hard to reproduce or track down. We have extensive logging facilities
that record all the decisions the proxies make, but without tool support deter-
mining why something failed can be extremely difficult and time-consuming.
Simple simulators play a role in allowing extensive debugging of protocols in
a simplified environment, but the benefit is limited. We believe that develop-
ment tools in general, and testing and debugging support specifically, may be
the biggest impediment to the deployment of even larger teams.

1.9.2 Centibots

Debugging is especially difficult because overall the system is behaving cor-
rectly. In one experiment, we had 66 robots in use at one time, producing over
1 MB of logs and debugging information per minute. We ran our experiment
for more than 2 hours. In Centibots, we have a very sophisticated logging
mechanism that writes every event, every message and information in an SQL
database. By using the database, it is possible to replay an entire experiment.
We also built SQL scripts that can extract statistics such as average running
time per robot, average traveling time per robot, and number of goals fulfilled
per robot that are very useful to the debugging process. Unless the system is
performing very strangely, noticing the presence of bugs is extremely hard. In
fact, one bug persisted for more than a year before being detected and fixed,
leading to a dramatic improvement in performance.

1.9.3 Cooperative Mediation

Even with specialized simulation environments, testing and debugging coordi-
nation protocols that operate in the large is very difficult. On reasonably small
problems involving tens of agents, noncritical problems often went unnoticed
for long periods of time. We encountered a number of problems in trying to
debug and test SPAM.

In the end, countless hours were spent pouring over many large log files,
adding additional debugging text, rerunning, and so on. We did develop sev-
eral graphical displays that helped to identify pathologies (or emergent behav-
iors) that could be witnessed only by viewing the system’s performance from
a bird’s eye perspective. It is clear that a combination of macro and micro
debugging methods is essential to developing systems of this type.

1.10 Conclusion

We have presented three initial attempts at performing large-scale coordina-
tion among robots or agents. We have shown striking similarities between the
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approaches that raise interesting scientific questions that must be addressed
in a principled way. Critically, design of the coordination seems to be driven
more by the difficult challenge of developing the software to implement it than
by principles or theory. It will be important, for the field to move forward, to
balance (or mitigate) development complexity with algorithmic performance
in a better way than has been done so far. If these challenges can be met, the
promise of large-scale coordinating is very exciting.
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