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Abstract. The CORBA standard now incorporates support for relia-
bility through two distinct mechanisms — replication (using the Fault
Tolerant CORBA standard) and transactions (using the CORBA Ob-
ject Transaction Service). Transactions represent a roll-back reliability
mechanism, and handle a fault by reverting to the last committed state,
and by discarding operations that were in progress at the time of the
fault. Replication represents a roll-forward reliability mechanism, and
handles a fault by re-playing any operations that were in progress at an-
other operational replica of the crashed server. Most of today’s enterprise
applications have a three-tier structure, with simple clients in the first
tier, servers in the middle-tier to perform the processing, and databases
in the third tier to store information. For such applications, replication
is required to protect the middle-tier processing, while transactions are
required to protect the third-tier data. This requires the reconciliation
of roll-forward and roll-back reliability mechanisms in order to protect
both data and processing, and to provide consistent end-to-end reliable
operation. This paper looks at the issues of integrating replication with
transactions for three-tier enterprise CORBA applications, with partic-
ular emphasis on reconciling the Fault Tolerant CORBA standard and
the CORBA Object Transaction Service.

1 Introduction

The emergence of Internet-based enterprise computing and Web-based electronic
commerce has led to the development of system architectures with advanced
features to address technical and quality-of-service (QoS) issues such as secu-
rity, data integrity, high-availability, reliability, scalability, atomicity, and session
management. Reliability, in particular, forms the cornerstone of every enter-
prise, with the market becoming increasingly intolerant of downtime, and with
enterprise server crashes leading to bad publicity, prohibitive financial losses,
reduction in stock prices, and loss of customers. With its adverse impact on the
economy [4] and on our quality of life, the lack of fault tolerance is increasingly
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more unacceptable, particularly for enterprise applications. Therefore, continu-
ous perceived uptime and reliability are key requirements of electronic commerce
servers.

There are several approaches to providing fault tolerance. Hardware redun-
dancy solutions are insufficient because they focus primarily on detecting, and
tolerating, hardware defects. Enterprise systems contain a lot of software, for
the most part, and use both hardware and software components that can fail,
thereby disrupting service. To provide the necessary degree of availability, these
systems must use hot swappable components (to replace a failed component on-
the-fly with a working component) and failover (to switch all clients to working
with the replaced component, instead of the old failed one). There are two dis-
tinct aspects of fault tolerance for enterprise systems — protection of the data
and protection of the processing (operations that are in progress) when a fault
occurs. To protect against the loss or the corruption of data, databases and
transaction processing systems are often employed. To protect against the loss
of operations or processing, the servers that perform the processing are often
replicated, so that there exist redundant servers to perform the computing and
redundant network resources for running the distributed application.

Most of today’s enterprise applications have a three-tier structure, with sim-
ple front-end clients (usually browsers) in the first tier, servers (business logic)
in the middle-tier to perform the processing, and databases and legacy appli-
cations in the third tier to store information. Different technologies form the
basis for each of the three tiers — for instance, application servers are usually
the environment of choice for the middle-tier business logic components. The ar-
chitecture of most enterprise applications is based on client-server middleware,
where a client requests services across the network, and a server performs the
services and returns results to the client.

Middleware platforms such as the Common Object Request Broker Architec-
ture (CORBA) [8] are increasingly being adopted because they simplify client-
server application programming by rendering transparent the low-level details
of networking, distribution, physical location, hardware, operating systems, and
byte order. However, despite their many attractive features, middleware plat-
forms have still not found favor for deployment in applications that have high
reliability requirements. Recognizing this deficiency, the Object Management
Group (OMG), the CORBA standards body, has attempted to incorporate spec-
ifications for reliability into the CORBA middleware standard. The reliability
support within CORBA takes two different forms: (i) the CORBA Object Trans-
action Service (OTS) [10], and (ii) the recently adopted Fault Tolerant CORBA
(FT-CORBA) standard [9].

Unfortunately, both of these specifications were developed independently, and
it is, in fact, difficult to reconcile replications and transactions in general. The
reason for this is that replication represents a roll-forward mechanism, where
a fault (crash of a server) is tolerated by switching over to a backup replica of
the server, and re-doing, or moving forward with, the operations in progress at
the failed server. On the other hand, transactions represent a roll-back mecha-
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nism, where the crash of a server is tolerated by discarding all of the operations
in progress at the failed server, and by reverting to the last well-known, or
committed, state persisted in a database. Clearly, the focus of each reliability
mechanism differs — transactions focus on protecting data, while replication
focuses on protecting processing. Stated another way, a roll-forward mechanism
promotes liveness, while a roll-back mechanism promotes safety.

For true reliability, enterprise applications clearly require elements of both
roll-forward and roll-back reliability strategies, in order to protect both data and
processing. In fact, each of the two complementary strategies stands to benefit
greatly from the other. However, in today’s state-of-the-art and state-of-the-
practice, this is challenging to achieve.

There exist two orthogonal, but equally essential, properties in building
mission-critical distributed systems: availability and consistency. Availability
provides clients with the abstraction of a continuous service, despite the fail-
ure of some server components, and is generally achieved using the replication of
critical resources, so that the failure of the copy of a critical component can be
masked by another copy. Consistency guarantees informally that the system will
always remain in a coherent state, despite the occurrence of faults. The partial
execution of an operation might lead to the violation of the consistency prop-
erty. For instance, when money is transferred from one bank account to another,
the system is in an incoherent state if the money is withdrawn from the source
account, but not deposited in the destination account. Consistency is generally
maintained through the use of transactional facilities. By integrating replication
and transactions, we can achieve two additional objectives: we provide stronger
consistency to replicated systems by supporting non-deterministic operation, and
we provide higher availability and failure transparency to transactional systems.

In this paper, we explore the underlying problems in composing the roll-
forward capability provided by replication with the roll-back capability provided
by transactional systems, in order to achieve end-to-end reliability for distributed
enterprise CORBA systems. We have chosen CORBA as our vehicle for explor-
ing the research problems of integrating replication and transactions because of
our prior experience1 with building replication-based CORBA systems, and also
because CORBA is unique in being the only middleware that currently incorpo-
rates specifications for both replication (FT-CORBA) and transactions (OTS).
It is our hope that the ideas in this paper will lay the foundations for recon-
ciling these two separate specifications and, thereby, for deriving more powerful
capability by combining FT-CORBA with OTS. It is not our intention, in this
paper, to invent novel protocols, but rather to present a pragmatic approach for
leveraging the best of the transactional and replication worlds, and for combin-
ing their power to achieve both reliability and availability for critical CORBA
applications.

1 The co-authors of this paper have independently developed fault-tolerant CORBA
systems [2,7], well before the FT-CORBA standard was approved. In addition, both
co-authors have contributed to, and participated in, the FT-CORBA standardization
process.



740 P. Felber and P. Narasimhan

The rest of this paper is organized as follows: Section 2 introduces the nec-
essary background concepts, and presents the fundamental system models that
we consider in the rest of this paper. Section 3 describes and compares roll-back
and roll-forward reliability in greater detail. Section 4 outlines our novel scheme
for integrating the best of the FT-CORBA and the OTS mechanisms to achieve
end-to-end availability and consistency. Section 5 discusses other research ef-
forts that are relevant to our work in this area. Finally, Section 6 presents some
concluding remarks.

2 Background

The architectures that form the focus of this paper are three-tier distributed
enterprise middleware applications. Thin first-tier clients communicate with ap-
plication servers that implement the application’s logic, typically using a middle-
ware component model such as Enterprise JavaBeans (EJB) [14] or the CORBA
Component Model (CCM) [11]. These middle-tier servers are transactional and
have access to back-end systems, which are typically highly available parallel
database servers. Figure 1 illustrates such a three-tier configuration in which
multiple application servers are used to process requests from possibly thou-
sands of thin clients.

Firewall

Thin
Clients

Servers
Application

Server
Database
Enterprise

Fig. 1. A Typical Three-tier Architecture

Although communication between clients and servers can happen over various
protocols, such as HTTP, HTTP/S, RMI-IIOP or SSL, in this paper, the focus
is on the use of CORBA for distributed first-to-second tier client-server interac-
tions. Similarly, we assume that communication between the middle-tier appli-
cation servers and the third-tier database system are performed using CORBA.
Thus, for the rest of this text, we assume that the communication between the
various tiers of this distributed client-server architecture occurs over CORBA’s
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Internet Inter-ORB Protocol (IIOP). However, the mechanisms discussed in this
paper are generic, and can be readily extended to other middleware and proto-
cols, as well as to additional levels of nesting (n-tier architectures).

In the rest of this section, we describe the current support for transactions
and fault tolerance within the CORBA standard.

2.1 The CORBA Object Transaction Service

CORBA incorporates support for roll-back reliability through the Object Trans-
action Service (OTS) [10]. OTS forms a part of the rich suite of services (such
as Naming, Events, Notification, etc.) that CORBA incorporates, and that ven-
dors provide, in order to free CORBA programmers from having to write such
commonly-used functionality themselves.

OTS essentially specifies interfaces for synchronizing a transaction across the
elements of a distributed client-server application, as shown in Figure 2. A trans-
action satisfies the four so-called ACID properties: Atomicity, i.e., transactions
executes completely or not at all; Consistency, i.e., transactions are a correct
transformation of state; Isolation, i.e., even though transactions execute concur-
rently, it appears for each transaction, T , that other transactions execute either
before T , or after T , but not both; and Durability, i.e., modifications performed
by completed transactions survive failures.

In OTS, a transaction is typically initiated by a client, and can involve multi-
ple objects performing multiple requests. The scope of the transaction is defined
by a transaction context, which is shared by the participating objects. The trans-
action context is logically bound to the thread of the client that initiated the
transaction, and is implicitly associated with subsequent requests that the client
issues, until the client decides to terminate the transaction. If no fault occurs for
the duration of the transaction, the changes produced as a consequence of the
client’s requests are committed, or preserved, in accordance with the durability
property above. In case a fault occurs during the transaction, any changes to
data that have occurred within the duration and scope of the current transaction
are rolled back and discarded.

Trans.
Ctx.

Transactional
Client

Trans.
Obj.

Transactional
Server

Operation
Transactional Transactional

Operation

Recoverable Server

Obj.
Recov. ResourceClient

Transaction Service

Fig. 2. Architectural Overview of OTS

Apart from the transactional client and the transaction context, a distributed
transaction typically involves three other kinds of objects — transactional, recov-
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erable and resource objects. Transactional objects are CORBA objects whose be-
havior and/or state is affected by being invoked within the scope of a transaction
(e.g., objects that refer to persistent data that can be modified by transactional
requests). Recoverable objects are transactional objects that explicitly participate
in the transaction service protocols. They do so by registering resource objects
with the OTS which, in turn, drives the commit protocol by issuing requests to
the resources registered for the transaction. Transactional (recoverable) objects
are hosted in transactional (recoverable) servers, which participate to the two-
phase commit protocol executed upon completion of a distributed transaction.

OTS implements roll-back reliability in the sense that the effect of the re-
quests issued in the context of a failed transaction are undone on all recoverable
servers. Roll-back might be implicitly triggered on the occurrence of a fault, or
explicitly requested by a transactional object. Upon roll-back, the client might
re-try the transaction or take some other appropriate action.

2.2 The Fault-Tolerant CORBA Standard

Support for roll-forward reliability in CORBA is provided by the recently
adopted fault-tolerant CORBA (FT-CORBA) [9] specification. FT-CORBA im-
plements reliability by replicating critical objects: if a server replica fails while
processing a client’s request, then another replica can take over the processing
of the request, generally without the client noticing the failure.

The FT-CORBA specification includes minimal fault-tolerant mechanisms
to be included in any CORBA implementation, as well as interfaces for more
advanced management facilities intended to be provided by a fault-tolerant
CORBA implementation. FT-CORBA implementors are free to use proprietary
mechanisms (such as reliable multicast protocols) for their actual implementa-
tion, as long as the resulting system complies with the interfaces defined in the
specification, and the behavior expected from those interfaces.

The client-side mechanisms to be included in all CORBA implementations
— regardless of whether they implement FT-CORBA or not — have been inten-
tionally kept minimal. They essentially specify object references that can contain
multiple profiles, each of which designates a replica (multi-profile IORs2), and
simple rules for iterating through the profiles in case of failure. These mecha-
nisms ensure that unreplicated clients can interact with replicated FT-CORBA
servers in a fault-tolerant manner.

The server-side components of FT-CORBA are shown in Figure 3. The Repli-
cation Manager handles the creation, deletion and replication of both the applica-
tion objects and the infrastructure objects. The Replication Manager replicates
objects and distributes the replicas across the system. Although each replica of
2 An Interoperable Object Reference (IOR) is a standardized form of a reference to a
CORBA object, and can contains one or more profiles. Each profile contains suffi-
cient information to contact the object using some protocol, usually TCP/IP; this
information often includes the host name, port number, and object key associated
with the CORBA object.
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Fig. 3. Architectural Overview of FT-CORBA

an object has an individual object reference, the Replication Manager fabricates
an object group reference that clients use to contact the replicated object. The
Replication Manager’s functionality is achieved through the Property Manager,
the Generic Factory, and the Object Group Manager.

Host, process, and object faults are detected by the Fault Detector. The
occurrence of faults are reported to the Fault Notifier, which filters them and
distributes fault event notifications to the Replication Manager. Based on these
notifications, the Replication Manager initiates appropriate actions to enable
the system to recover from faults.

3 Reliability Strategies

In this section, we compare the replication-based and transaction-based reliabil-
ity strategies introduced in the previous section, with particular focus on their
respective benefits and drawbacks.

3.1 Replication-Based Reliability

Replication is intended at protecting computational resources through the use
of redundancy: if a processor fails, then another processor can take over the
processing of the failed processor.

In distributed systems, the two best-known replication styles are active [13]
and primary-backup [1] (or passive) replication. A replicated object is often rep-
resented by an object group, with the replicas of the object forming the members
of the group. The object group membership may be static or dynamic. Static
membership implies that the number, and the identity, of the replicas do not
change over the lifetime of the replicated object; on the other hand, dynamic
replication allows replicas to be added or removed at run-time.
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With active replication, all of the replicas of the object play the same role:
every active replica receives each request, processes it, updates its state, and
sends a response back to the client. Because the client’s invocations are always
sent to, and processed by, every server replica, the failure of any of the server
replicas can be made transparent to the client. With primary-backup replication,
one of the server replicas is designated as the primary, while all of the other
replicas serve as backups. A client typically sends its request only to the primary,
which executes the request, updates it own state, updates the states of the
backups, and sends the response to the client. The periodic state updates from
the primary to the backups serve to synchronize the states of all of the server
replicas at specific points in their execution.

Replication implements roll-forward recovery mechanisms that promote live-
ness by continuing processing where it had been left at the time of the failure. In
active replication, in the event of a fault (one of the active replicas crashes), the
other replicas continue processing the current request, regardless, thereby im-
plicitly implementing a roll-forward mechanism. In primary-backup replication,
in the event of a fault (the primary replica crashes), one of the backup replicas
takes over as the new primary and re-processes any requests that the previous
primary was performing before it failed. If a backup replica crashes, then, there is
no loss in processing. Thus, the roll-forward mechanism is explicitly implemented
in the re-election of a new primary replica, and the re-processing of requests by
the new primary. Consistency is maintained for both active and primary-backup
replication by guaranteeing that partial request execution will not harm since
the request will be eventually completed (by “rolling forward”).

A major limitation of replication-based system is that consistency may not
be preserved in the presence of non-determinism. Indeed, a frequent assumption
in building replicated CORBA systems is that each CORBA object is determin-
istic in behavior. Determinism implies that if distinct distributed replicas of the
object, starting from the same initial state, receive and process the same set of
operations in the same order, they will all reach the same final state. It is this
reproducible behavior of the application that lends itself so well to reliability.
Unfortunately, pure deterministic behavior is rather difficult to achieve, except
for very simple applications. Common sources of non-determinism include the
use of local timers, multi-threading, operating system-specific calls, processor-
specific functions, shared memory primitives, etc.

Non-deterministic behavior is an inevitable and challenging problem in the
development of fault-tolerant systems. For active replication, determinism is cru-
cial to maintaining the consistency of the states of the replicas of the object.
Passive replication is often perceived to be the solution for non-deterministic
applications. There is some truth in this perception because, with passive repli-
cation, invocations are processed only by the primary, and the primary’s state
is captured and then used to update the states of the backup replicas. If the
primary fails while processing an invocation, any partial execution is discarded,
and the invocation is processed afresh by the new primary. Because the state
updates happen only at one of the replicas, namely, at the primary replica, the
results of any non-deterministic behavior of the replicated object are completely
contained, and do not wreak havoc with the consistency of the object.
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There exist situations, however, where passive replication is not sufficient to
deal with non-determinism. This is particularly true of scenarios where the non-
deterministic behavior of a passively replicated object is not contained because
the behavior has “leaked” to other replicated objects in the system. Consider the
case where the primary replica invokes another server object based on some non-
deterministic decision (e.g., for load balancing, the primary replica randomly
chooses one of n servers to process a credit-card transaction). If the primary
replica fails after issuing the invocation, there is no guarantee that the new
primary will select the same server as the old primary; thus, the system will now
be in an inconsistent state because the old and the new primary replicas have
communicated with different servers, both of whose states might be updated.

For passive replication to resolve non-deterministic behavior, there should
be no persistent effect (i.e., no lingering “leakage” of non-determinism) resulting
from the partial execution of an invocation by a failed replica. This is possible
if the passively replicated object does not access external components based on
non-deterministic inputs, or if all accesses are performed in the context of a
transaction aborted upon failure. Sources of non-determinism (such as thread
scheduling) can also be controlled by careful programming. In general, however,
passive replication is no cure for non-determinism.

3.2 Transaction-Based Reliability

Unlike replication, transaction processing systems essentially aim at protecting
data. When a failure occurs in the context of a transaction, the objects involved
in the transaction are reverted to their state just prior to the beginning of the
transaction. All of the state updates and all of the processing that occurred
during the transaction are discarded, often with no trace left in the system. Some
systems support nested transactions, where a new (child) transaction can be
initiated within the scope of an existing (parent) transaction. If the nested (child)
transaction fails, the enclosing (parent) transaction needs not automatically roll
back; the application can attempt to correct the problem, and subsequently retry
the nested transaction. However, if the enclosing transaction encounters a fault,
then all the nested transactions roll back, along with the enclosing transaction.

Transactions use roll-back recovery mechanisms that guarantee consistency
by undoing partial request processing. Data is protected from the undesirable
side-effects of failures, but computational resources may become unavailable for
arbitrary durations. Transactions are thus an effective mechanism for preserving
consistency, but not for achieving high availability, as they sometimes trade
liveness for safety.

3.3 Roll-Back vs. Roll-Forward

Consider a simple three-tier bank application. A client C issues a transfer request
to a passively replicated bank object B, which in turn withdraw money from a
bank account X and deposit it on another account Y (see Figure 4). The bank
is essentially a stateless object that coordinates the money transfer between
stateful bank account objects, typically hosted in a database server. As the data
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Fig. 4. Reliability in Multi-tier Applications. (a) Roll-forward. (b) Roll-back.

pertaining to the bank accounts is possibly managed by distinct entities, e.g.,
different branches, the account objects execute on different servers and are not
co-located with the bank object. Any of the bank or account objects can therefore
fail independently.

If the primary bank object B1 fails while performing a transfer, neither
the invoker C, nor the backup B2 generally know at what point B1 failed —
whether it was before/while invoking X, between invocations to X and Y , or
after/while invoking Y . Roll-forward and roll-back reliability strategies adopt
two approaches to address this problem, as illustrated in Figure 4, where the
flow of requests/replies is represented by arrows, and the flow of time occurs
downward, toward the bottom of the figure.

With roll-forward reliability strategies, invocations are traditionally sent
using reliable multicast (also known as reliable group communication), so that
all of the replicas of an object receive every request. This is evident in an active
replication configuration, where a client does not need to re-issue the request
if one of the active server replicas fails (in fact, the client is typically not even
aware of this failure). In a primary-backup setting, when the primary has fin-
ished processing a request, it multicasts both the response and a state update to
the backups before returning the response to the client. The state update allows
the backups to synchronize their state with that of the primary. The response is
also cached by the backups for retrieval, should the primary fail. If the primary
fails, then a backup assumes the role of the new primary transparently. If the
primary fails before returning a response to the client, the client will re-issue the
request to one of the backups (now the new primary); if the new primary has
a cached response and the last state update of the old primary, it can readily
return a response; if it doesn’t have the cached response, it will re-process the
request.
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In Figure 4 (a), B1 fails after having successfully invoked X, but before
invoking Y and replying to C. When taking over as the new primary, B2 does
not know when B1 failed, and it re-processes the request. If we assume that
objects have a deterministic behavior, B2 will re-invoke X and Y . Unless these
invocations are idempotent (i.e., repeated executions of the invocation leave the
state of the invoked object unaltered), re-processing these requests will corrupt
the state of X. Thus, such duplicate processing of requests should not be allowed
to occur. To guarantee this behavior, using FT-CORBA, the invoker embeds
a request identifier within each request. This identifier is used at the invoked
server X to detect a duplicate invocation, and to return previously cached replies
instead of re-processing the entire request. The invocation to Y is normally
processed and, finally, B2 sends a reply to C. Note that, for C, the server moves
from one consistent state (1) to another consistent state (3); the intermediary
inconsistent state (2) is note exposed to C.

With roll-back reliability strategies, an invocation is typically sent using
point-to-point communication and, upon failure of the invoked server, all ef-
fects of the invocation are first wiped out from the system, and the invoker then
re-issues the request to a backup server. This retransmission is generally per-
formed transparently by the middleware infrastructure, without the knowledge
of the client application. However, the roll-back phase of the recovery requires
mechanisms to enable a component to undo some changes to its state, and any
effects of processing an invocation, in order to avoid inconsistencies. This can
be achieved using transactional facilities to reset the component to a previous
well-known committed state if the transaction aborts.

Roll-back becomes more interesting when the participants in the transaction
are distributed entities. In such distributed transactions, it is possible to roll
back the actions even on remote components that have been invoked in the
context of the transaction. In Figure 4 (b), B1 starts a new transaction before
processing the request from C, and fails just after having successfully invoked
X. Since B1 did not commit the transaction, the actions performed on X as part
of this transaction are undone, and the state of the system (i.e., the balance of
the accounts) is reset to what it was prior to the the invocation of B1. With
this roll-back strategy, the entire invocation sub-chain whose root is the crashed
object is reverted to its previous consistent state. Since C does not receive a
reply, it eventually re-issues the request to B2. If no fault occurs, invocations
to X and Y are then processed normally, and a reply is returned to C. Note
that, if C does not re-issue its request, the server will be left in a consistent
state (2), identical to the initial state (1); after re-invocation, the server reaches
a consistent final state (3).

Because of their potential for faster recovery (there is no roll-back phase
prior to the retry-recovery phase), roll-forward approaches are well suited to sys-
tems that have real-time requirements or that need predictable response times,
such as embedded systems or supervision and control applications. In partic-
ular, when roll-forward recovery is used with active replication, recovery time
can be significantly faster than with roll-back recovery. On the other hand, roll-
back approaches are well adapted to transactional systems where the integrity
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of data far outranks the recovery time, such as electronic commerce and banking
applications.

Because each reliability strategies have distinct properties, critical distributed
application can significantly benefit from combining their particular strengths
(strong consistency with transactions and high availability with replication)
while simultaneously alleviating their respective limitations (deterministic be-
havior with replications and unpredictable response time with transactions).

4 Combining Replication and Transactions

In this section, we outline a protocol to provide end-to-end reliability between
clients and replicated servers. It supports non-deterministic servers and nested
invocations, and can be used in transactional environments, such as enterprise
application servers. Although we illustrate this protocol in the context of a three-
tier architecture, it extends naturally to n-tier systems.

With this protocol, the client can issue a request (remote invocation) to a
“highly available” server. The outcome of the request is preserved, despite the
failure of the client, network, or server. In the event of a failure, the client can
re-issue the same request to obtain a reply, without worrying about duplicate
processing and its potential for the corruption of the server state.

The protocol makes use of FT-CORBA and OTS to replicate computational
resources and to maintain consistency. It also assumes that servers have access
to a logging infrastructure — similar to the logging mechanisms specified by
FT-CORBA — for storing, and retrieving, information. The log must be acces-
sible by all the replicas of an object and support transactional operation. It can
be implemented by various mechanisms, such as a database, or communication
primitives that guarantee atomic exchange of data among replicas at commit
time.

The important feature of this architecture is the fact that the middle-tier
servers perform the core processing, and initiate transactions on the third-tier
database servers, which store and persist the data. We exploit the FT-CORBA
infrastructure to handle the server replication and client-side failover. We then
exploit the OTS mechanisms to enable the servers to perform their processing
(to handle a client request) in the scope of nested transactions that they initiate.
Thus, as emphasized in the following sections, we “marry” the best of the OTS
and FT-CORBA mechanisms to achieve end-to-end reliability and availability
all the way from the first-tier client to the third-tier database.

4.1 Client-Side Mechanisms

Server objects are passively replicated and hosted by an FT-CORBA infrastruc-
ture. A replicated server is represented by a multi-profile CORBA Interoperable
Object Reference (IOR), with each profile enumerating the address (host name,
port number, object key) of a server replica. A non-replicated first-tier client
addresses the middle-tier primary server replica using this fault-tolerant object
reference.
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On its part, the client does not need to perform any additional processing,
apart from conforming to the client-side FT-CORBA specification. According
to the FT-CORBA standard, the client-side ORB runtime first invokes the pri-
mary server replica. If the primary is suspected to have failed, then, the client-
side ORB runtime transparently iterates through the addresses contained in
the multi-profile IOR, invoking each address in search of an operational server
replica.

A ServiceContext field,3 embedded within the request by the client-side
ORB runtime, contains a unique request identifier that permits the middle-tier
servers to detect if the request is a duplicate, i.e., it has been seen before. This
allows the server-side ORB runtimes to detect, and discard, duplicate requests
and, therefore, to prevent the server state from being corrupted. Note that the
client’s invocation does not need to execute in the context of a transaction, or
use OTS at all (thereby eliminating the need for embedding transactional service
context within the client’s request). Thus, the only service context information
carried in the request from the first-tier to the middle-tier is that for FT-CORBA
duplicate-request detection.

4.2 Server-Side Mechanisms

On the server side, the protocol relies on OTS and FT-CORBA to achieve both
consistency and availability. Consistency is implemented not only through the
OTS’ mechanisms, but also through the server-side fault-tolerant ORB runtime.
If a client mistakenly invokes a backup replica (rather than the primary replica),
the server-side FT-CORBA runtime intercepts the request (before it reaches the
server replica), and transparently notifies the client of the primary’s identity
using a LOCATION FORWARD reply message. The client-side ORB runtime
can use the address embedded within that message to contact the real primary
replica. The client request is never executed on a non-primary replica, thereby
ensuring that the states of the server replicas are not rendered inconsistent by
accidental diversion of requests to the wrong server replica.

On receiving a request from a first-tier client, the primary first checks in
the log to see if the request has already been processed (the unique duplicate-
detection context embedded in the client’s request is used precisely for this
purpose). If the current client request is a duplicate, the primary returns the
previously generated (and cached) reply. If this is a fresh non-duplicate request,
the primary server replica initiates an OTS transaction. Note that, in a multi-
tier architecture, this might be a nested transaction, if the incoming request was
already part of another transaction. The scope of the transaction encloses all
the operations performed by the replica, including any interactions with other
components.

The client’s request is then processed within the scope of this server-initiated
transaction. By hosting the middle-tier servers over an FT-CORBA infrastruc-
3 CORBA allows a client to propagate additional information to the server, in order
to influence the processing of a specific invocation. This additional information is
embedded into the ServiceContext field of an IIOP invocation message, and is
interpreted by the server-side ORB runtime.
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ture that is OTS-enabled, the servers can initiate transactions, while benefiting
from the FT-CORBA mechanisms. This allows us to handle both stateless and
stateful servers in the middle-tier, as opposed to most three-tier enterprise ar-
chitectures, which typically handle only stateless servers. If the server object is
stateful, then, the state (or state update) is retrieved from the primary replica
through the Checkpointable (or Updateable) interface that every object must
support, according to the FT-CORBA standard. This state is written to the
log, together with the response for the client. The replica then commits the
transaction and returns the response to the client.

If the primary fails before committing, the transaction rolls back and undoes
all of the operations performed by the failed replica (the complete invocation
chain whose root is the failed primary is “rolled back”, including data written
to the log). If the primary fails after committing, the reply is available at the
backup replicas, one of which is elected as the new primary and will return this
reply if the invocation is encountered again.

This protocol applies recursively to further tiers. Thanks to the use of nested
transactions, a failure can be contained into just one branch of the invocation
tree and a roll-forward strategy can be used within the scope of that branch.

This scheme is best illustrated by an example. Consider the bank application
introduced in Section 3.3. Figure 5 shows a run of the protocol with two failures.
The client C first sends a transfer request to the replicated bank object B.
The primary replica, B1, starts an transaction TX1 and sends a request for
withdrawal to account X. In turn, the primary replica of the account, X1, starts
a transactions TX1.1 nested within TX1, performs the withdrawal, logs the state
update and the response, commits the transaction, and returns the response to
B1, which fails before receiving the response. As B1 fails before committing TX1,
the transaction rolls back. As a consequence, nested transaction TX1.1 also rolls
back and the state of the account is reverted to its previous value. At the time
B2 takes over, the global state of the system is consistent thanks to the roll-back
recovery mechanism of OTS.

The client runtime of the FT ORB at C detects the failure of B1 and trans-
parently re-issue the transfer request to the second profile in the IOR, B2. This
roll-forward mechanism effectively shields the client from the failure of the server.
B2 notices that the transfer request has not yet been processed — there is no as-
sociated entry in the log. Therefore, B2 initiates a new top-level transaction TX2
and invokes the primary replica X1. X1 performs a withdrawal in the context of
a new nested transaction TX2.1, returns a reply, and fails (after committing the
transaction). Note that, in this scenario, the failure occurs at a 3rd tier server
and transaction TX2.1 does not roll-back. The FT ORB runtime at B detects
the failure and re-issues the request to the backup server X2, again using a roll-
forward mechanism. Since transaction TX2.1 completed successfully, X2 detects
that the request has already been processed, fetches the state update and the re-
ply from the log, updates its state, and returns the previous reply to B2. Finally,
B2 performs the deposit on account Y , logs the response, commits transaction
TX2, and returns the response to the client.

The key idea here is the combination of the replication and transaction mod-
els. The beauty of the server-initiated OTS transaction scope is that any fault
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Fig. 5. Protocol Run with Failures in the 2nd and 3rd Tiers.

that occurs during the server’s processing of the client’s request will not vio-
late data consistency (because it merely triggers a roll-back of the processing
and state changes). At the same time, because the server is replicated, and the
client-side ORB runtime is equipped with the FT-CORBA failover infrastruc-
ture, the crash of a server replica does not lead to loss of availability, either. Thus,
the best of both worlds — replication for availability (liveness) and transactions
for consistency (safety) — is achieved.

5 Related Work

There exist several commercial implementations and research prototypes of the
FT-CORBA specification, as well as of the OTS specification. These implemen-
tations employ either the roll-back or the roll-forward reliability strategies, but
do not attempt to reconcile the two different approaches. Because our focus
in this paper is on the integration of the two approaches, and not on systems
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that satisfy only one of the two approaches, we will not discuss the merits and
drawbacks of the various FT-CORBA and OTS implementations.

Instead, we will highlight other research efforts that have attempted to solve
specific aspects of this integration problem, albeit from a different viewpoint.
Related efforts include research on integrating transactional protocols with group
communication protocols, where group communication forms the foundation for
maintaining consistency in most replication-based systems.

GroupTransactions [12] aim to take advantage of both group communication
and transactions through a new transactional model, where transactional servers
can, in fact, be groups of processes. This allows for transactional applications to
be built on top of computer clusters.

An e-Transaction [3] is one that executes exactly once despite failures, and is
targeted at three-tier enterprise architectures with stateless middle-tier servers
that are replicated. This overcomes the limitations of current transactional tech-
nologies that, for the most part, ensure at-most-once request processing, which
is not sufficiently reliable. The e-Transaction abstraction builds upon an asyn-
chronous replication scheme that provides both the liveness feature of replication,
as well as the safety feature of transactions.

Another CORBA-related effort [6] aims to compare the two different kinds
of systems — one with group communication and no transactions, and the other
with transactions and no group communication — from the viewpoint of repli-
cating objects for availability. Their study leads them to conclude that although
transactions are effective in their own right, using group communication infras-
tructures to support transactional applications can lead to benefits, such as faster
failover in the event of a fault.

While all of the above replication schemes refer to objects or servers, the
notion of integrating group communication into a transactional model has been
extended to the replication of the entire database itself [5]. This work attempts
to eliminate the centralized and, therefore, unreliable approach that databases
adopt today. The proposed family of replication protocols exploit group commu-
nication semantics to eliminate deadlocks, improve performance, and enhance
reliability.

IBM Research’s Dependency-Spheres [15] aims to integrate (asynchronous)
messaging and (synchronous) transactions for distributed objects, with the in-
tention of increasing the level of reliability provided for enterprise Web Services.
Dependency-Spheres provide a new kind of global transaction context that al-
lows both synchronous and asynchronous distributed messaging style exchanges
to occur within a single transaction-like operation.

To the best of our knowledge, our research represents the first use of trans-
actional mechanisms to implement replication, and to address the determinism
problem of nested interactions between replicated objects.

6 Conclusion

Today’s enterprise applications have a three-tier structure, with simple clients in
the first tier, servers in the middle-tier to perform the processing, and databases
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in the third tier to store information. For such enterprise applications, repli-
cation is required to protect the middle-tier processing, while transactions are
required to protect the third-tier data. The CORBA middleware standard now
incorporates support for reliability through these two distinct mechanisms —
roll-forward replication (using the new Fault Tolerant CORBA standard) and
roll-forward transactions (using the CORBA Object Transaction Service). In the
current state-of-the-art and state-of-the-practice, it is difficult to reconcile these
two techniques.

For true reliability, however, enterprise applications clearly require elements
of both roll-forward reliability (to protect processing, and for liveness) and roll-
back reliability (to protect data, and for safety). In this paper, we presented a
novel combination of replication and transactions to achieve the best of both
worlds, and to obtain end-to-end consistency and availability all the way from
the first-tier client to the third-tier database.

We exploit the FT-CORBA infrastructure to handle the server replication
and client-side failover. We then exploit the OTS mechanisms to enable the
servers to perform their processing in the scope of nested transactions that they
initiate. To our knowledge, this is the first use of transactional mechanisms to
implement replication and to address the determinism problem of nested inter-
actions between replicated objects. Although our solution has been presented in
the context of CORBA, it is equally applicable to other transactional environ-
ments.

Early results from experimental evaluation with off-the-shelf ORBs demon-
strate that little effort is required to combine replication and transaction in
a real-world application, and the overhead remains small under normal opera-
tion. In the presence of failures, the performance of the replication and recovery
mechanisms strongly depends on where and when the failures occur — a failure
occurring in the context of a top-level transaction will force a roll-back, which
might be costly when many resources are involved in the transaction. In addition,
the overhead of recovery is highly dependent of the quality of the FT-CORBA
and OTS implementations, and in particular the performance and accuracy of
their monitoring mechanisms.
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