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Using 
Interceptors to
Enhance CORBA

T
he integration of distributed computing and
the object model leads to distributed object
computing, in which objects rather than
processes are distributed across multiple com-
puters. A well-established standard for dis-

tributed object computing is the Common Object
Request Broker Architecture (CORBA).1 Distributed
object frameworks like CORBA have many attractive
features but provide little support for alternative pro-
tocols, profiling and monitoring, security, or reliability.

Previously, you would have had to create—and
enable the application to use—the components that
provide such additional capabilities. Even if the com-
ponents that provide these capabilities already exist,
using them requires substantial effort, as well as spe-
cialized knowledge and understanding of problems
outside the application domain.

With the advent of interceptors—nonapplication com-
ponents that can alter application behavior—you can
enhance CORBA applications at runtime with compo-
nents whose operation is transparent to both the appli-
cation and the CORBA framework; this means that you
can modify application behavior without having to mod-
ify the application or the CORBA framework.

The Object Management Group—the CORBA
standards body—recognizes the value of interceptors.2

Other distributed object computing standards, such
as Microsoft’s Distributed Component Object Model
(DCOM), provide for interceptor-like components
through custom marshaling mechanisms,3 which
enable an application to bypass the standard commu-
nication mechanisms and to use custom ones.

Interceptors can also allow you to chain together
multiple components (each with its own functional-
ity) to achieve new functionality transparently. Over
the past few years, we have developed a system—called
Eternal—that exploits interceptors transparently.4-6

The Eternal system enhances unmodified CORBA

applications with reliability by using an interceptor to
chain together protocol, monitoring, scheduling, and
replication management components at runtime.

HOW CAN CORBA BE ENHANCED?
Since the OMG’s adoption of CORBA 1.0, the stan-

dard has become increasingly popular for building dis-
tributed object applications. The key component of
CORBA is the object request broker (ORB), which acts
as an intermediary between the client and the server.
The ORB supports language transparency (allowing
clients and servers to be programmed in different lan-
guages), location transparency (allowing clients to con-
tact servers with no knowledge of the server’s location),
and interoperability (allowing clients and servers to
communicate across different platforms).

Alternate protocols 
At present, CORBA objects cannot interact with

other kinds of distributed objects over protocols that
do not conform to its General Inter-ORB Protocol
(GIOP). Every conformant ORB must implement the
standard mapping of the GIOP specifications onto
TCP/IP, also known as the Internet Inter-ORB Protocol
(IIOP). To enable CORBA applications to communi-
cate using protocols other than IIOP, application pro-
grammers must expend effort in rewriting the ORB’s
transport-level mappings.

A better approach is to divert the GIOP messages sent
by CORBA objects—transparently and without modi-
fication to the ORB—to components that map GIOP
onto other protocols. In this way you can build proto-
col adapters that take advantage of CORBA’s capabil-
ities without modifying the application or the ORB.

Profiling and monitoring
CORBA does not currently include components for

profiling or monitoring. While non-CORBA compo-

By using interceptors—nonapplication components that can alter 
application behavior transparently—you can enhance a CORBA framework
or application without modifying either.
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System call interception
The mechanisms of the /proc-based implementa-

tion, developed in the context of global file systems,7

extend the functionality of standard OSs at the user
level. In this approach, an interception layer trans-
parently attaches itself to an executing process in order
to monitor and control its behavior. Neither the client
nor the server needs to be modified or recompiled to
exploit this approach.

In the Solaris and Linux OSs, the /proc file system
provides access to the internals of each running process
on the computer. Each entry in the /proc directory, also
called a process’s image, is a file whose name corre-
sponds to the Unix process identifier. The files in the
/proc file system, and thus the processes they represent,
can be manipulated via a standard interface that allows
each process’s system calls to be captured. The argu-
ments and the return values of the intercepted system
calls can be extracted and even modified. The appro-
priate patching of these system calls can alter the
behavior of the intercepted process.

As Figure 1a shows, each CORBA client or server is
viewed as a process that can be controlled via the /proc
interface. Thus, each CORBA object can be monitored
during its lifetime for system calls related to many dif-
ferent activities, including memory management, net-
work communication, and file access. An interceptor
can be designed to watch for specific system calls made
by CORBA objects when they communicate over IIOP.

Library routine interception
The library interpositioning implementation ex-

ploits the facilities of the Unix runtime linker,8 which
allows shared objects to be added to a process as it
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nents may exist that provide such services, they can-
not readily be used within the CORBA framework.
To use them, you would first have to understand the
mechanisms of the component and then incorporate
the necessary hooks into the application or the ORB.

A better approach is to use existing profiling com-
ponents that can trace an application and its messages
transparently, without the need to embed any special
code into the application or the ORB. You can use
such components for monitoring the system and mea-
suring its performance.

Scheduling
CORBA provides support for many of the com-

monly used multithreading models. However, for
some applications it is desirable to employ a custom
thread-dispatching policy that the ORB does not sup-
port. To do this, you would need to rewrite the ORB’s
dispatching code. 

A better approach is to use an interceptor to intro-
duce a scheduling component before the incoming
requests reach the target objects. By controlling the
order in which the threads and the requests are
released to the application, the scheduling component
can override the ORB’s—or the application’s—thread
and scheduling policies.

Reliability
The fault tolerance mechanisms that CORBA cur-

rently provides are rudimentary, consisting mostly of
exceptions returned if an object or a processor fails. To
meet the reliability needs of the applications, you would
have to implement the necessary fault tolerance mech-
anisms within the application.

A better approach is to use an interceptor to add
components that handle object replication, fault detec-
tion, and fault recovery in a manner that is transparent
to both the CORBA application and the ORB. These
components, once configured, operate independently
of the programmer, the application, and the ORB.

INTERCEPTOR MECHANISMS
Current OSs provide hooks that can be exploited

to develop components such as interceptors. Unix
provides at least two possible implementations.

• System calls. The /proc-based implementation pro-
vides for interception at the level of system calls.

• Library routines. The library interpositioning
implementation provides for interception at the
level of library routines.

While the techniques differ, the intent and use of the
interceptor in both cases is identical and requires no
modification to the intercepted CORBA objects, the
ORB, or the OS.

Compression
An interceptor can be used to add a compression component that trans-

parently modifies the messages exchanged among the objects of a CORBA
application, while leaving the behavior of the application unchanged. Most
data is exchanged between application objects via IIOP messages. Thus, the
interceptor’s interface is targeted at the communication of IIOP messages. 

At the sender, the interceptor captures the outgoing IIOP message and passes
it to a compression component, which compresses the data and hands the
compressed data back to the interceptor. The interceptor, in turn, passes the
IIOP message containing the compressed data back to the ORB, which sends
it out using TCP/IP. At the receiver, the interceptor captures the IIOP message
that it receives from TCP/IP. It passes the IIOP message to a decompression
component, which produces the original IIOP message. The interceptor hands
the IIOP message back to the ORB, which delivers it to the target object.

The sender (receiver) object is completely unaware of the presence of the
interceptor and the compression (decompression) component. Moreover,
the ORB never sees the compression or decompression components and
handles the IIOP messages containing the compressed data just as it would
handle IIOP messages without compressed data.
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initializes. These shared objects are mapped into the
process space after the dynamic executable is
launched, and before any of the normal shared object
dependencies are loaded into the process space, as
Figure 1b shows. To achieve this effect, the runtime
linker does not require that the application be modi-
fied, relinked, or recompiled.

Library interpositioning exploits the fact that an
executable can have symbols (undefined variables and
functions) whose definitions remain unresolved until
runtime. At runtime, the first shared object that
resolves a symbol is accepted as the symbol’s defini-
tion. If subsequent shared objects in the same process
space also provide definitions for the same symbol,
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Figure 1. Possible implementations of interceptors using (a) system call interception and (b) library routine interpositioning.



time requirements, some CORBA applications
need a more stringent protocol than IIOP.
Modification of either the applications or the
ORB might be both infeasible and expensive,
and interceptor-based protocol adapters can
provide an effective solution.

Profiling components
You might want to build execution profiles

to determine, for example, a system’s resource
allocation for a CORBA application or an
application’s runtime resource usage. The sys-
tem calls or library routines that comprise the
interceptor’s interface depend on the applica-
tion and on the kind of profile to be generated.

Adding interceptors for the purpose of pro-
filing involves recording, but not modifying, the
application’s behavior. A profile of each application
object can be constructed by using an interceptor to
add a logging, analysis, or display component to
record or interpret the information in the intercepted
system calls or library routines. For instance, to build
a profile of a CORBA application’s network use, the
interceptor’s interface is targeted to capture the com-
munication of IIOP messages over the network. For a
user-friendly presentation of the intercepted informa-
tion, the interceptor can be chained with a display
component that shows the network traffic.
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these definitions are ignored by the runtime linker. The
first definition is said to interpose on all other defini-
tions of the same symbol. A process can thus be made
to use custom function definitions provided by an
interposed library in place of the original or standard
function definitions.

Microsoft Windows NT’s Dynamically Linked
Libraries (DLLs) provide similar hooks that can be
exploited to build interceptors.

USING INTERCEPTORS
Here are the ways you can enhance CORBA for

profiling, protocol adaptation, scheduling, and relia-
bility. The interceptor’s interface—the system calls that
you intercepted in a /proc-based implementation or
the library routines that you redefined in a library
interpositioning implementation—depends on the
information that the interceptor must provide to the
added component. The interceptor’s interface can
cover all (or a subset of) the system calls or library
routines used by a CORBA application.

Protocol adaptation components
If you wanted to send the IIOP messages exchanged

between CORBA objects using a protocol other than
IIOP, you could use an interceptor to add a protocol
adaptation component. The protocol adaptation com-
ponent that the interceptor introduces may simply
encapsulate the IIOP messages using a protocol-spe-
cific header without ever modifying the IIOP messages.
Alternatively, the protocol adaptation component may
transform all, or a part of, the contents of the IIOP
messages into the equivalent messages of the alterna-
tive protocol. In either case, for the protocol adapta-
tion to work, the alternative protocol must preserve
the semantics of IIOP communication.

To enable CORBA applications to communicate
using an alternative protocol, the interceptor’s inter-
face must be targeted not only at the communication
of IIOP messages, but also at the establishment of con-
nections, the release of connections, and the queries
related to connection status and connection informa-
tion. The interceptor must prevent the intercepted sys-
tem calls or library routines from ever reaching TCP/IP
or the OS. Instead, these system calls and library rou-
tines must be mapped onto the equivalent mechanisms
of the alternative protocol. This might require the use
of an IIOP parser component.

Using interceptors in this way to construct proto-
col adapters is particularly useful when CORBA appli-
cations are required to communicate with legacy
systems that use some proprietary protocol. In this
case, an interceptor-based protocol adapter has the
advantage of enabling interworking between the
legacy system and the CORBA application without
requiring you to modify either of them. To meet real-
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Security
An interceptor can be used to enhance CORBA applications with secu-

rity components that encrypt and decrypt, authenticate, verify, or reject
connections on the basis of user-specified or configurable security policies.
The encryption and decryption components modify IIOP messages
exchanged by the application objects without modifying the application’s
behavior. Other security components, such as those for authentication, may
result in modification of the application’s behavior.

For security components that encrypt and decrypt IIOP messages, the
interceptor’s interface is targeted at the communication of IIOP messages.
The interceptor at the sender captures outgoing IIOP messages and passes
them to a component that encrypts the data contained in them. The inter-
ceptor then passes the IIOP message containing the encrypted data back
to the ORB, which sends it over TCP/IP to the target object. At the receiver,
the interceptor extracts the IIOP message containing the encrypted data,
obtains the original IIOP message using a decryption component, and passes
the message to the ORB for delivery to the target object.

Other security components may use protocol adaptation components to
send the IIOP messages using a secure protocol instead of TCP/IP. Security
components may also use profiling components to monitor CORBA appli-
cations. In this case, the profiler watches all connections to and from the
application objects, and may reject connections from untrusted comput-
ers—or may permit restricted access to specific computers. A security com-
ponent may also employ a display component to show security-related
information in a user-friendly way.
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To build a profile of a CORBA application’s
method invocation or object access patterns, an inter-
ceptor requires detailed information at the object and
method levels. Fortunately, the IIOP messages ex-
changed between CORBA objects contain informa-
tion about the identity of the target server object and
the method to be invoked on that object (the results
and exceptions generated by the invoked method).
Unfortunately, CORBA does not currently provide an
accessible interface to parse the intercepted IIOP mes-
sages and extract this useful information. An inter-
ceptor’s interface for the capture of IIOP messages,
coupled with a custom IIOP parser component, is an
effective solution. As Figure 2a shows, the intercep-
tor captures the IIOP messages and passes them to an
IIOP parser component, which then extracts the use-
ful information from the message and may use a pro-
filing component to store and display the method
invocation and object access statistics. 

Scheduling components
You can use interceptors to provide a specialized

scheduling strategy for the methods executed by the
objects of a CORBA application. While an intercep-
tor doesn’t result in the modification of the method
that the object executes, it does add a scheduling com-
ponent to modify the point in time at which the
method is executed on the object. An interceptor-
based scheduling component can transparently alter
the behavior of the application by imposing a specific
custom scheduling strategy on method invocations.

Multithreaded ORBs and applications typically
employ the standard Posix or Solaris user-level thread
libraries for all thread-related functions. The library
interpositioning implementation thus lends itself well
to the building of thread interceptors. The intercep-

tor interface consists of library routines related to
thread creation, thread release, thread management,
and the dispatch of method invocations onto threads.
For each of these intercepted library routines, the
interceptor passes the intercepted information to a
scheduling component, as Figure 2b shows. The
scheduling component stores this information,
enqueues any incoming method invocations, and
decides the point in time at which the method invo-
cation is released to the target object and is thus
allowed to execute. Thus the scheduling component’s
multithreading, request handling, and invocation dis-
patching policies override any that are implemented
by the ORB or the CORBA application.

This combination of a thread interceptor and a
scheduling component is particularly useful for build-
ing a custom threading framework or for introducing
a new multithreading policy without requiring mod-
ification of the ORB.

Reliability components
Perhaps the most striking use of interceptors is in

enhancing CORBA with fault tolerance. The Eternal
system provides fault tolerance by replicating objects
within a CORBA application and transparently dis-
tributing the replicas across the system. For replica-
tion to be effective, every replica of an object that
performs an operation must have the same state so
that the replicated object can continue to provide use-
ful service even when one of its replicas fails.

For replica consistency, all of the replicas of an
object that execute incoming method invocations
must see the same sequence of method invocations in
the same order so that they have the same state at
the end of each method execution. By the very nature
of replication, each replica of a client object that
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invokes a method issues the same invocation.
Consequently, the target server object may receive
duplicate invocations. Such duplicate messages must
not be allowed to execute and corrupt the state of
the target object. 

Multithreading in the ORB and in the application
leads to additional difficulties in maintaining replica
consistency. The specification of multithreading in
CORBA provides no guarantees on the order in which
the ORB dispatches incoming method invocations
onto the target object’s threads. The ORB’s handling
of multithreading means that the order of method exe-
cutions in two replicas of the same object might be
different. Consequently, their states at the end of a
sequence of dispatches of invocations onto threads
might be inconsistent.

Maintaining replica consistency while allowing
replicas to crash and recover requires difficult pro-
gramming. Through its novel use of interceptors and
chained components, as shown in Figure 3, the Eternal
system provides transparent fault tolerance with
strong replica consistency for CORBA applications.
As shown in Figure 3, for outgoing messages, the pro-
filing component monitors replicas and processor load
for resource management, the protocol adaptation
component encapsulates IIOP messages for transmis-
sion, and the replication management component
adds information to enable detection and suppression
of duplicate operations.

For incoming messages, the scheduling component
schedules and dispatches operations, the replication
management component detects and suppresses dupli-
cate operations, the protocol adaptation component
converts reliable multicast messages into IIOP mes-
sages, and the profiling component behaves the same
as with outgoing messages. 

ETERNAL’S INTERCEPTORS
The interceptor’s strength lies in its ability to allow

an unmodified precompiled CORBA application to
benefit from the enhancements that Eternal provides.
In the current implementation of the Eternal system,
the interceptor uses the library interpositioning
approach to add components for protocol adaptation,
scheduling, replication management, and profiling.
The ORB-independent nature of the Eternal system’s
interceptor has made it possible to port these compo-
nents to multiple commercial ORBs with relative ease. 

Reliable multicast
To facilitate consistent replication, the interceptor

introduces a protocol adaptation component to con-
vey the application’s IIOP messages over a reliable
totally ordered multicast protocol, such as Totem,9

instead of TCP/IP. The protocol adapter merely encap-
sulates, but does not transform, each intercepted IIOP
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message with a header that contains sufficient infor-
mation to enable the message’s transmission over the
reliable multicast protocol. The information in the
reliable multicast protocol header is derived in part
from the information (for example, the identity of the
target object) in the IIOP message.

Consistent multithreading
To preserve replica consistency for multithreaded

objects, or for processes containing multiple single-
threaded objects that share data, the interceptor intro-
duces a scheduling component. The scheduling
component ensures a consistent order for the dispatch
of threads and method invocations within the appli-

Platform

Replica of
CORBA object

CORBA ORB

Interceptor

Reliable multicast system

Interceptor's interface

Profiling
component

Protocol
adaptation
component

IIOP messages

Scheduling
component

IIOP
messages

Reliable multicast
messages

Replication
management
component

Figure 3. Using an interceptor in the Eternal system for outgo-
ing messages (solid arrows) and incoming messages (dashed
arrows). 
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cation, regardless of the ORB’s or the application’s
multithreading policies.

Replication management
To enable the detection and suppression of dupli-

cate invocations and duplicate responses, the inter-
ceptor adds a replication management component.
This component inserts information into each outgo-
ing message before transmission to enable duplicate
detection at the receiving end. An additional compo-
nent is used to enable the logging of messages, and the
transfer of state to new and recovering replicas, in
order to bring their states up-to-date.

Resource management
To support the practical deployment of replicated

objects, resource management is essential. The inter-
ceptor adds a profiling component that monitors the
loads and the network traffic on the computers that
host the replicas, and provides information that
enables the migration of replicas for the purpose of
load balancing. In addition, the profiler provides infor-
mation about the resource usage of each computer in
the system, which is used in the allocation of new repli-
cas to computers.

A lthough we have described interceptors here in
the context of CORBA, the interception ap-
proach is generic and can be applied to other dis-

tributed object frameworks. The value of interceptors
lies in their ability to enhance an existing framework—
and supported applications—transparently. ❖
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