
Task Inference and Distributed Task Management in the
Centibots Robotic System ∗

Charles L. Ortiz, Jr.
SRI International

333 Ravenswood Ave
Menlo Park, CA 94025

ortiz@ai.sri.com

Régis Vincent
SRI International

333 Ravenswood Ave
Menlo Park, CA 94025

vincent@ai.sri.com

Benoit Morisset
SRI International

333 Ravenswood Ave
Menlo Park, CA 94025

morisset@ai.sri.com

ABSTRACT
We describe the Centibots system, a very large scale distributed
robotic system, consisting of more than 100 robots, that has been
successfully deployed in large, unknown indoor environments, over
extended periods of time (i.e., durations corresponding to several
power cycles). Unlike most multiagent systems, the set of tasks
about which teams must collaborate is not givena priori. We first
describe a task inference algorithm that identifies potential team
commitments that collectively balance constraints such as reacha-
bility, sensor coverage, and communication access. We then de-
scribe a dispatch algorithm for task distribution and management
that assigns resources depending on either task density or replace-
ment requirements stemming from failures or power shortages. The
targeted deployment environments are expected to lack a support-
ing communication infrastructure; robots manage their own net-
work and reason about the concomitant localization constraints nec-
essary to maintain team communication. Finally, we present quan-
titative results in terms of a “search and rescue problem” and dis-
cuss the team-oriented aspects of the system in the context of pre-
vailing theories of multiagent collaboration.

Categories and Subject Descriptors
I.2.9 [Robotics]: [Autonomous vehicles]; I.2.11 [Distributed ar-
tificial intelligence]: [Multiagent systems]

General Terms
Algorithms , Management, Performance, Experimentation

∗This work is sponsored by the Defense Advanced Research
Projects Agency (DARPA) Software for Distributed Robotic
(SDR), under Department of the Interior Contract NBCHC020073.
The U.S. Government is authorized to reproduce and distribute
reprints for Government purposes notwithstanding any copyright
annotation thereon. The views and conclusions contained herein
are those of the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either expressed
or implied, of DARPA, or the U.S. Government.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’05,July 25-29, 2005, Utrecht, Netherlands.
Copyright 2005 ACM 1-59593-094-9/05/0007 ...$5.00.

Keywords
Autonomous robots and robot teams, teamwork, mobile agents.

1. INTRODUCTION
Centibots, an autonomous and collaborative robotic system, has

been successfully demonstrated on teams of more than 100 hetero-
geneous robots involved in joint exploration and searching tasks
within indoor office-like environments. At deployment time, the
area of operation for the robots is assumed to be unknown and also
lacking any wireless communication infrastructure to support com-
munication among robots. In addition, the Centibots system has
been designed to operate over extended periods of time (i.e., dura-
tions corresponding to several power cycles).

From the robotics perspective, the motivation for studying such
very large scale robotic systems is threefold: (1) the scale is such
that tele-operation approaches would be infeasible; (2) multirobotic
teams properly architected can provide a measure of survivability:
if an element of the system is damaged or otherwise disabled, the
system can continue to operate; and (3) division of labor means
increased performance. In the second case, either assigning a sepa-
rate operator per robot or requiring a single or small group of opera-
tors to monitor theentireteam at once would result in, respectively,
confusion among the operators or cognitive overload to an operator.

From the multiagent systems perspective, robotics has a num-
ber of appealing characteristics as a problem domain. In the first
place, robotic applications can serve as testbeds in which impor-
tant elements of multiagent theories become physically grounded
(e.g., beliefs and actions) thereby leading to concrete measures of
performance. Further, a multiagent theory is not as susceptible
to the criticism that its success depends on unrealistic simplify-
ing assumptions. For example, in robotics real-time performance
is crucial and cannot be neglected. When developing Centibots,
a number of challenges immediately arose. First, the task space
over which the agents collaborate is “continuous” and not known
in advance: the area of deployment could, in theory, be subdivided
into an infinite number of subareas with a corresponding number of
tasks. In addition, unlike traditional research in multiagent systems
in which constraints on the communication medium are often ab-
stracted away, in the Centibots system a robot cannot assume that
when it comes time to communicate to another agent it can simply
construct a suitable term in some agent communication language
and then forward that to the receiving agent. The sending agent
may need to reason about where to localize itself so that the mes-
sage can be relayed through an intermediate agent; the agent must
also be able to reason about the possibility of failure and and how
to recover when necessary.

860

Figure 1: Centibots searching a 24,000 square foot unkown
space

2. PROBLEM
The Centibots system has been tested in problem settings that

correspond abstractly to “search and rescue” problems. These in-
volve first finding an object of interest (OOI) within some large
physical space and then “protecting” it by positioning robots in
such a way as to maximize sensor coverage so that any intruders
in the area can be tracked. Since the area in question is assumed
to be unknown, such missions are articulated in three successive
phases by the Centibots system: (1) a collection ofmapperrobots
first conducts a coordinated exploration of the area and a concur-
rent mapping to produce an occupancy map of the environment;
(2) the robots perform an exhaustive search for the OOI; and (3)
the robots distribute themselves in a coordinated manner to cover
the environment. In the real world, the OOI might correspond to an
earthquake survivor or a hostage and the team of robots could be
viewed as an initial response team deployed, for safety, in advance
of a human crisis response team. Such robot teams can be viewed
as extending a human’s “eyes and ears” into some dangerous envi-
ronment. The benefits of such a system are, therefore, potentially
significant in terms of reduced risk to human life.

The robot fleet.The Centibots system includes search and map-
per robots. The search team consists of 97 ActiveMedia Amigobot
robots, each equipped with sonars, a wireless card, a processor con-
sisting of a VIA Epia M9000 board (equivalent to a P3 933 proces-
sor), a monocular camera, and a 20 GB disk for storage. The map-
ping team consists of 6 ActiveMedia P2-A2 Pioneer robots with
laser range finders, sonar, and onboard VersaLogic VSBC-8 boards
with a Pentium III 850 MHz processor. Each robot can run local-

Act types:

map(Group,Area)
search-for(Agent,Object,Area)
guard(Agent,Object)
replace(Agent1,Agent2)
video(Agent, Direction)
track(Agent,Object)
search(Agent,Room)
rotate(Agent,Angle)

Agent types: mapper, explorer, link
Agent states: power, location, commitments,
beliefs (e.g., map), task status

Figure 2: Act and agent types in Centibots

ization, navigation, path planning and vision processing algorithms
on its processor. For the experiments we will describe, the OOI
was represented by a pink object (a ball or cube) which was easy
to detect with onboard vision software. The form of the OOI was
not important for the experiments; the purpose of the experiments
was to demonstratecollaborative search and explorationand not
perception.

In this paper, we summarize our research in mission stages (2)
and (3) by way of a description of the SPARE (for SPAtial REa-
soning) system and then a distributed dispatcher algorithm used in
the searching and protecting stages. Stage (1) was described in a
previous paper [10].

3. TASK INFERENCE
Since none of the robots are equipped with effectors to manipu-

late their environment (e.g., for grasping objects), the set ofprim-
itive actionsavailable to a Centibot are of three types: perceptual,
communication, and motion. Examples include turning a sensor on
or off, sending a message, and moving to or rotating around a par-
ticular point. In addition to primitive action types, there are higher-
level action types that can be constructed from the set of primitives.
Examples are shown in Figure 2. Act types are represented as finite
state machines in the Saphira programming language resident on
each robot [12].

At the highest level, Centibots missions are defined in terms of
the sequence of three high level stages discussed earlier, over some
spatial area of interest. For any mission, the system must identify
the tasks to be performed by the team for the mission to succeed.
Given the continuous nature of the space, the first step, following
the mapping stage, involves a process oftask inference, T . Let
TG stand for thetopological graph, S to the map produced in the
first phase,R to the resource pool,N to a set of task nodes, and
E to a set of edges connecting elements ofN . Then,T is a map-
ping, T : S × R → TG = 〈N, E〉, where the setR conditions
the set of task nodes according to the capabilities reflected in the
resource pool (in terms of the number of available resources and
types of sensors). The task nodes correspond to task (location) pa-
rameters for the task types shown in Figure 2. Once all of the pa-
rameters of an act type are instantiated, it becomes a fully instanti-
ated act type (not yet necessarily executable): an example might be
search-for(robot32,OOI, N85) . OnceTG is computed,
the distributed dispatcher, discussed in the next section, allocates
resources to each task.

At execution time, individual robots expand the instantiated act
types to an executable form. For example, if the robot is committed
to search-for(robot32,OOI, N85) , it will expand that act

861

Figure 3: Occupancy map produced by first wave of mapper
robots

type to a sequence of movements (after computing a suitable nav-
igation path) to point N85, stop, and then rotate 360 degrees to
search for the OOI. When executed, act types are commonly re-
ferred to asbehaviors[1]. Each robot can also combine act types
at execution time, corresponding to blended behaviors [18]. As we
will describe, the task inference process computes such behaviors
by balancing several constraints.

3.1 Spatial representation in SPARE
The task inference process operates in a number of steps. First

the occupancy map produced during the first mission stage is con-
verted intoTG, such that each vertex ofTG corresponds to a goal
to cover to perform the OOI search, given the sensor capabilities;
and the protection task is reduced to distributing the robots in such
a way that each node inN represents a potentially interesting point
to be covered.

Several constraints are imposed on eachn ∈ N : (1) clearance:
eachn must be a valid position in free space; (2)reachability: a
valid trajectory must exist for any pair ofn’s; (3) completeness: the
entire area must be covered by somen; and (4)time: task execution
time must be real-time.

The algorithm computesTG by first building a skeleton giving
the structure of the free space and then generating TG from the
skeleton such that each vertex corresponds to a valid goal and each
transition corresponds to a valid trajectory. The skeleton is repre-
sented as aVoronoi Diagram, which is a collection of polygons (re-
gions) generated by a set of points (sites) such that any point inside
one of the regions is closer to that region’s site than to any other
site. The Vornoi Diagram is computed by wavefront expansion in
the discretized map [2]. The complexity of this process is linear
with the number of cells in the grid, independent of the shape of
obstacles in the environment. The process consists of the following
steps: (1) a wavefront is propagated from some sites (“obstacle”
cells in the bitmap), and (2) a distanced gives the minimum dis-
tance between two site, the cells at the meeting of two or more
waves belonging to the Voronoi Diagram.

From the skeleton we proceed as follows:

1. Vertex identification: cells with one edge or more than three
edges are recorded.

2. Edge building between two vertices: the Voronoi compo-
nents linking the vertices are followed. The length of the
component is recorded as a label for the edge.

3. Graph filtering and simplification: redundant vertices are merged
followed by a reachability filtering process based on the clos-
est distance recorded in each cell of the diagram.

Figure 4: Part of the skeleton

4. Spatial information: for each edge, we associate the corre-
sponding component of the Voronoi diagram

An additional step identifies the topological type of an area (i.e.,
whether an area corresponds to an office or corridor). This is needed
for navigation robustness (speed and sonar parameters must be ad-
justed when entering a narrow area such as an office), and for
performing the searching and intrusion detection. For each edge,
heuristic determination of the topological type is based on the clos-
est distance to obstacles and the topological type of the previously
classified edges in the neighborhood. Once this process is com-
pleted, the topological type (room or corridor) is added to the label
of each edge

The next step considers the set of all possible assignments,α,
from nodes ofTG to 1 or 0, depending on whether or not a robot
is present at a node. We introduce a cost function,C(α), which
is a scalar function of the assignment. Since the number of as-
signments is exponential in the number of nodes, we decompose
the cost into subcosts that can be easily calculated, and use an ap-
proximate method to determine a good assignment. In general, we
want costs to be local to a single node, or at least to a small neigh-
borhood of nodes, so that incremental optimization algorithms will
work well. To this end, we determine the global cost by summing
smaller cost functions:

C(α) =

pX
i=0

wi

nX
j=0

ci(vj , α)

wheren is the number of nodes inTG, andp is the number of cost
functions. Thewi are weights that can be changed to reflect the
type of mission under consideration. The weights were chosen em-
pirically, to reflect the different priorities in the two mission stages
of searching for the OOI and protecting the OOI.

Note that, potentially, each local cost functionci could involve
the whole assignment. In practice, there is only one such cost func-
tion, which is the difference between the number of robots in the
assignment, and the desired number of robots for the mission. This
cost is easily computed. We have chosen the following ten local
cost functions, by observing an expert choose assignment solutions
and explain the basis for each.

c1: Corridor occupancy.From TG, we are able to distinguish
corridor areas from office areas.c1 reflects the corridor occupancy.
This function is equal to -1 if a robot is allocated on a vertex with a
type “corridor”, 1 otherwise.

c2: Office occupancy.In the same way asc1, c2 reflects office
occupancy.

c3: Corridor only. If c1 favors a robot allocation in a corridor it
does not prevent allocations in offices. To have a more exclusive
allocation in corridorsc3 returns -1 if the allocated vertex is a type
“corridor”, 1 otherwise.

c4: Offices only.In the same wayc4 is added to prevent alloca-

862

Figure 5: Part of the topological graph

tions in corridors.
c5: Sensor coverage: the distance between two robots should not

exceed the maximal sensor rangeR to assure a consistent coverage
of the environment. To evaluatec5, the shortest distance between
any pair of vertices is pre-computed using Johnson’s algorithm.
This computation is done just after the construction ofTG. Each
time a robot is allocated a vertexv, the distanced to the closest
allocated vertexv′ to v is computed. The value ofc5 depends ond
andR: an excessive overlapping or too large of a distance between
v andv′ is penalized byc5. The differenced - R corresponds to
discretized intervals. A specific cost is returned for each interval.

c6: Communication coverage:The position of the OOI must be
communicated to the command center by the robot that found the
OOI. The range of wireless communication is limited. A back-
bone between the OOI and the command center must guarantee
such communication. To computec6, each vertex belonging to the
shortest path between the OOI and the command center is labeled
“BB”. c6 equals -1 if the vertexv is labeled “BB”, 1 otherwise.

c7: Protection of the OOI:A strong density of robots must be
present in the neighborhood of the OOI.c7 equals 1 if the distance
between the allocated vertex and the position of the object of value
exceeds a predefined threshold, -1 otherwise.

c8: Visibility : c8 favors allocations on points with high visibil-
ity. The largest number of edges connected to a vertex (NEmax) is
recorded during the construction ofTG. c8 is equal toNEmax−NE

whereNE is the number of edges connected to the allocated vertex.
c9: Unique path between two areas of the environment:To com-

putec9, each vertex corresponding to an articulation point inTG is
labeled “AP”.c9 equals 0 if the allocated vertex is tagged “AP”, 1
otherwise.

c10: Number of robots:The number of available robots to per-
form a task may vary (breakdowns, empty batteries). This num-
ber should be controlled during the resource allocation process. At
each allocation, the number of allocated robotsNR is updated.c10

returnsN∗
R −NR whereN∗

R is the desired number of robots.
For each elementary cost function,ci, the above rules are used

to compute the value in the case of an allocation. Similarly, each
ci returns a value in the case of a deallocation (a vertex previously
allocated is deallocated).

Each new weight distributionwi defines a new task for the sys-
tem. For instance, if we want to sendn robots to the corridors to
maintain the communication backbone, onlyw1, w3, w5, andw9

will have a value different from 0. To sendn robots around the ob-
ject of interest to maintain the backbone communication, onlyw5,
w7, andw9 are considered.

In the context of our work, two main tasks have been imple-
mented and extensively tested. The first is OOI searching. Since
this search must be done over the entire environment (and not for a
specific topological area),w1, w2, w3, andw4 are equal to 0. Since

Figure 6: Skeleton components associated with edges

the OOI position is still unknown,w6 is also equal to 0. All the
other weights are considered. The second task is OOI protection.
All intruders must be detected. In a very large environment, we fa-
vor allocations in the corridors to limit the number of robots, sensor
coverage, global visibility and backbone communication. Then, to
perform this task, onlyw2 andw3 are set to 0.

3.2 Task resolution
We want to find the n-tuple(v1, v2, ...vn) optimizingC with a

weight distributionwi specific to the task. We observed that the ini-
tial TG does not contain enough vertices to provide good coverage
of the environment and to obtain a satisfying solution (no possibil-
ity to place a robot along a long edge). To obtain better coverage
of the environment, new vertices are, therefore, added toTG along
the skeleton component of each edge ofTG (Figures 6 and 7).

The search space associated with the optimization ofC has a
size2n wheren is the number of vertices inTM (typically, sev-
eral hundred). In this huge search space and in the context of our
application, our goal is not to find an optimal solution but an ap-
proximate one in a reasonable time (within a few minutes). The
quality of a solution is determined by human expertise: a solution
is considered good if no misallocation is detected by a human ana-
lyzing the result.

We used simulated annealing to compute the solution based on
a linear cooling schedule (Tnew = Told − dt), whereT is the
temperature. The algorithm starts from an initial random allocation
respecting the desired number of robots ifw10 is not null. WhileT
is greater than 0,n verticesvi of TGare picked randomly. For each
vi, Ci is the current cost locally associated tovi. If vi is allocated
(resp. not allocated),C′

i is the new cost computed by deallocating
vi (resp. allocatingvi). If δC = C′

i − Ci < 0, the allocation ofvi

is changed. IfδC ≥ 0, the probabilityp to change the allocation of
vi depends onT and is computed withp = exp(−δC/T). If the
allocation ofvi has been changed,Ci is updated.T is then updated
and another cycle is started.

We also tried approaches other than simulated annealing but were
not successful. For example, using genetic algorithms the initial
population turns out to consist of 10,000 genes, where the number
of genes corresponds to the number of vertices in the graph and the
value for a gene (1 or 0) depends on whether it is allocated or not
allocated. The problem we noted was very slow computation time,
and convergence was difficult to control.

Results.We generated TGs for environments as large as 24,000
square feet. The size of the TG in such cases was approximately
500 nodes. During the search task, the cost functions used were
c5, c8, c10; a random solution had an average cost of 7,950 whereas
our SPARE system was able to compute a solution with cost 3,200
with an average CPU time of 50 ms. For the protection task, the
cost functions used werec1, c5, c6, c7, c8, c9, c10. The average cost
of a random solution was 11,530; the average cost of a SPARE

863

Figure 7: Addition of vertices along each component

solution was -1,540, with an average CPU time of 200 ms.

4. DISTRIBUTED TASK ALLOCATION
Having identified the tasks that need to be performed, the dis-

patching algorithm allocates robots to tasks and secures commit-
ments for each robot. Recall that the Centibots system is intended
to operate over multiple robot power cycles so that the dispatcher
will also be responsible for reallocating resources. The system
makes extensive use of the Jini [4] architecture. Each robot and
each algorithm is a network service that registers, advertises, and
interacts independently of physical location. Services include a
map publisher that aggregates data from mappers and publishes the
map to other robots, the dispatcher that allocates tasks to robots,
and the user interface. The result is a very modular, scalable infras-
tructure.

Each robot is completely autonomous and is able to reach any
node in the map by using its own local path planner [11]. The
metaphor we use to describe the dispatcher system is that of a taxi
dispatcher, where each robot corresponds to an independent taxi.
There are two modes of operation; one is managed and the second
is auction based. In the managed mode, when a robot (taxi) is ready
to work, it informs the dispatcher by communicating its position
and battery level; the dispatcher then assigns the taxi one fare (in
our case, a node to navigate to and execute a predefined behavior).
In the auction-based mode, when a robot (taxi) is ready to work, it
asks for the list of jobs available and ranks them using its own pref-
erence function (e.g., current position, battery level). Once ranked,
the robot (taxi) bids with its ranked job list and the dispatcher al-
locates jobs in preference order. Subsection 4.2 explains in more
detail the differences in the two modes of operation.

4.1 Strategy and preference functions
We experimented with several task allocation strategies. The

problem is to minimize the search time, where all robots start from
the same position. This problem is in theory similar to a multiple
traveling salesman problem with the difference that there is noa
priori notion of the number of available salesmen, and one can fail
at any time during execution. One obvious strategy is to expand
the search from the starting point, choosing the closest point from
the current location. The second obvious strategy is the opposite:
the robots attempt to reach the farthest possible job. The major
difference between a real taxi and our dispatcher algorithm has to
do with the utility and cost functions. In a real taxi operation, the
longer the fare is, the more money that is made. In our system, all
nodes have equal reward and no cost is incurred. The only metric
the system is trying to minimize is the time to complete a search.

We tested the system in three live, realistic experiments moni-
tored by DARPA. One experiment involved 24,000 square feet of

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

500 robots
38 robots
30 robots
20 robots
10 robots
15 robots
12 robots

7 robots

Figure 10: Increasing the number of robots available for
searching beyond 20 does not yield a faster completion time

space.1 The SPARE algorithm produced aTG with 499 nodes.
To simulate the environment in where the robots are performing

the search, we used a modified version of the Saphira simulator
built for the robots. The simulator is capable of simulating all the
robot sensors and actuators (laser range finder, sonars, motor con-
trols) using the same programs. In addition, the map that the sim-
ulator uses for the environment is the exact map produced by the
mapper robots in the first phase of an actual physical run. As far
as the search robots are concerned there is no difference between a
simulated run and an actual run. We use this simulator to run differ-
ent task allocation strategies and observe the performance profiles
of each of them. The simulation lacks one key feature which is
the ability to simulate collisions with other robots. In all simula-
tions, robots aretransparentfrom one another and are not affecting
each others. This feature is crucial if we had to make performance
predictions of an algorithm in the real world but we were only in-
terested in relative performances, in the same setup, among alterna-
tive strategies. Figure 8 shows the search completion time for that
experiment: the strategy of choosing the closest job to the robot
seems to be the best one. When the strategy was actually executed,
however, the performance was worse than the graph predicted: this
was due to the massive traffic jam created by the robots. One way
to avoid the traffic congestion problem is to disperse the group of
robots such that a robot will remain in the area originally assigned
for any subsequent “local” jobs. This strategy starts like the fur-
thest away strategy for the initial job and then switches to a closest
possible strategy for the follow-on jobs; we refer to this strategy as
clustering. Figure 8 plots the performance of all strategies.

In contrast to the results shown in Figure 8, which were done
in simulation, Figure 9 illustrates task allocation, using the cluster-
ing method, during an official DARPA physical experiment involv-
ing 45 robots in which obstacle avoidance and real execution were
taken into consideration. As one can see, the system demonstrated
similar performance.

4.2 Optimizations
The physical experiments identified the need for several enhance-

ments to the clustering strategy. The first needed optimization had
to do with the ad-hoc network employed by the system.2 The

1A video of this experiment is available at the Centibots website:
http://www.ai.sri.com/Centibots/pictures/demo2small mov.html
2We used the Topology Dissemination Based on Reverse-Path For-

864

Figure 8: Comparison of all obvious strategies for task allocation. The X axis represents time and the Y axis represents the number
of jobs completed. This data were collected in simulation.

Figure 9: Graph of task allocation using the clustering method captured during an official experiment using 45 robots.The X axis
represents time and the Y axis represents the number of jobs completed.

865

problem is that there is no guarantee of connectivity between team-
mates when robots begin their tasks or when a robot attempts to
contact the dispatcher at the completion of a task to get assigned
to a new one. When this happens, a robot will wait for 2 minutes
and then start moving toward its starting point while checking for
network connectivity. In this way, the robot eventually reacquires
network connectivity. One disadvantage to this approach is that
it can result in a great deal of unnecessary travel (and battery us-
age). We also observed that if the delay is increased (that is, before
the robot decides to return to the starting point) other robots would
tend to come to the vicinity and provide network connectivity. In
the search stage, the system tried to minimize search time; an idle
robot would, therefore, not result in the most efficient search. We
improved the efficiency of idle robots by allowing them to search
for nearbyjobs. This new strategy had several advantages: it sim-
plified the computation of the ranked list of jobs for each robot,
it made better use of each robot that traveled outside the current
network zone, it decreased the number of messages for the system,
and it gained time for the robots to expand the network zone.

Since communication can never be guaranteed, a purely central-
ized dispatcher has problems associated with it: exchanges with a
dispatcher agent can take time. As described earlier, in the Centi-
bots system every algorithm or agent, including the dispatcher, is
a network service. To avoid reliance on a single centralized dis-
patcher service, we designed the dispatcher to support hierarchi-
cal dispatching. Each robot can register with multipledispatching
agents, one of which is considered “preferred”. Teams of robots
are formed by acommander, and for each team, a dispatcher is
selected. Each team (robots plus preferred dispatcher) behaves ex-
actly like the single team we have described. The human comman-
der assigns a set of jobs to each team and the teams’ dispatchers dis-
tribute those tasks to individual robots. When a robot has finished
its assigned jobs, it notifies the dispatcher, making itself available,
and requests a new set of jobs. If a robot cannot contact its pre-
ferred dispatcher or if its preferred dispatcher does not have more
jobs available, the robot automatically asks the other dispatchers for
jobs. The latter option increases redundancy and reliability while
providing a means for load balancing: robots can be reallocated to
a dispatcher that has more work than other dispatchers. This load
balancing is achieved completely autonomously.

Auctioneer vs. Dispatcher.The Centibots allocation system was
designed to allow the dispatcher agent to act as an auctioneer: robots
can “bid” on the jobs for which they are the most competent. We
found that this feature, however, could introduce networking prob-
lems. The robots have access to an 11-Mbps shared network; if,
at the start of a search, all 100 robots start communicating, they
will saturate the auctioneer and the network, effectively prevent-
ing communication (i.e.,network floodingwould occur). As a fur-
ther complication, all the robots start from the same position, and
therefore their bids would all be more or less identical. Once the
robots have started the search and have dispersed, the auctioneer
and the network stabilize and produce good performance. Since
all the robots are starting from the same position and are executing
the same ranking algorithm, one option for avoiding this problem
would be to have the auctioneer compute the robot’s expected pref-
erences and then just assign the preferred jobs to the robot. This
would decrease the network congestion by reducing the size of
messages (robots do not then need to be aware of all of the hun-
dreds of jobs that must be allocated). To implement this option,
each robot must periodically pass to the dispatcher/auctioneer its
position, battery level, and orientation. However, it turns out that
this information is already circulating in the system for use by the

warding (TBRPF) protocol [14].

user interface: for display purposes, each robot is sending status
information to the command control station every second. It was
trivial to have each dispatcher/auctioneer eavesdrop on these update
messages, and collect such information for free. As an additional
improvement, since the dispatcher knows where its team members
are, we have incorporated a very robust real-time monitoring sys-
tem developed for past robotic projects that allows the dispatcher
to put jobs back in the queue if a robot is not heard from for an
extended period of time [21].

5. TEAM-ORIENTED BEHAVIOR IN CEN-
TIBOTS

The question of whether a group of agents is truly collaborat-
ing on a task is a difficult one. Rich belief-desire-intention (BDI)
theories, such as SharedPlans, model the constraints on the evo-
lution of mental states necessary for collaboration [5]. Within a
real-time robotic system, explicitly representing and reasoning with
such complex theories is a major challenge. Given the limited
computational resources available to the sorts of simple robots that
make up the Centibots system, it is more reasonable to use such the-
ories as blueprints in the design; such an approach is one of those
advocated in [5], and is the one that we have adopted. SharedPlans
is not the only such theory that could provide such a blueprint, but
it is one of the most complete existing theories of collaboration.

According to SharedPlans, the following elements summarize
the major requirements for successful collaboration over some task
(the methods employed by Centibots to address these requirements
are shown in parentheses): (1) A set of agents has been identi-
fied for the task (the dispatcher(s) monitors the robots and also
runs auctions to identify capable agents); (2) the agents agree on
a recipe (currently, this is built in to the behaviors represented and
used by each robot within the Saphira system); (3) agents provide
help when needed (the system and individual agents make use of
an intelligent monitoring system, described elsewhere [21], to iden-
tify failures and unexpected events that need to be addressed); (4)
agents are committed to the success of the joint activity (again, sup-
ported by the monitoring system and by the dispatcher in making
use of robot resources to ensure survivability of the team); and
(5) agents communicate when they need help (agents incorporate
communication constraints when localizing themselves to maintain
team communication).

Another view of team collaboration is that explored by team the-
ory [17] in which teamwork is identified with agents that are work-
ing to maximize social welfare or team utility. The Centibots sys-
tem also satisfies this view of collaboration: the construction ofTG
was based on the maximization of a weighted set of constraints.

6. RELATED WORK AND LESSONS
LEARNED

We have described the first successful, very large scale (on the
order of 100 robots) distributed robotic system designed using mul-
tiagent principles (the other effort jointly funded by DARPA under
this program instead adopted strictly emergent behavior approaches
based on the notion of stigmergy [7,9]). Our approach makes use of
decision theoretic techniques for task inference and auction-based
approaches for distributed resource allocation. Our hope is that
such approaches are more easily extendable when more complex
behaviors than those found in social insects are desired. Although
our approach did not make use of an explicit BDI architecture, we
showed how the system satisfied many properties that have been
ascribed to truly collaborative systems.

866

We introduced the distributed dispatcher idea in previous work:
the Distributed Dispatcher Manager (DDM) [22] modeled thou-
sands of agents and tasks and employed an algorithm similar to
ours for resource allocation. There are a number of important dif-
ferences, however: (1) tasks in DDM are given, corresponding to
targets that appear in the environment and must be tracked; (2) the
space through which sensor tracking agents move is unconstrained;
and (3) the DDM experiments were restricted to simulation. Other
work in distributed sensor networks, both mobile and stationary,
are described in [13]. Target tracking with small teams of multi-
ple robots in simulation have been examined in [8]. Deployment
and exploration of a single mobile robot within a fixed communi-
cations network has been reported in [3]. Incremental deployment
algorithms for 4-robot teams, without addressing communications
constraints and without the use of an initial map of the deployment
area, have been explored in [6]. Our work in interleaving com-
munications planning and mission planning were originally devel-
oped and tested on teams of smaller outdoor robots equipped with
GPS [15,16,19,20].

We believe that we have also shown that robotics is a good do-
main for exploring multiagent system ideas: a number of tech-
nology enablers (smaller and cheaper platforms, faster processors,
better sensors, wireless communication and ad-hoc network proto-
cols) have made this possible. Among the challenges and lessons
learned, from the multiagent systems perspective, were the follow-
ing: (1) one cannot always assume that the set of multiagent tasks
will be given a priori; (2) reasoning about communication and
agent localization to support communication must be an integral
part of agent systems; (3) real-time behavior in the robot domain
is crucial; hence, complex deliberative reasoning must sometimes
be substituted for faster reactive response; (4) the real world is un-
predictable, demanding robustness of multiagent systems to action
and resource failure; (5) agents will often need to satisfy multiple
objectives at one time (e.g., search a room while acting as a com-
munication link) and (6) operation in real space entails the vertical
integration of many capabilities (such as sensor interpretation, lo-
calization and navigation).

7. ACKNOWLEDGMENTS
The authors would like to thank the entire Centibots team: An-

drew Agno, Linda Briesemeister,Brian Burns, Michael Eriksen, Kurt
Konolige , Mark Lewis, Enrique Ruspini, Dieter Fox, Jonathan Ko,
Benson Limketkai, Bill Kennedy, Gary Fisher, Leonidas Guibas,
Jean Claude LaTombe,Francois-Marie Lefevere,Danny Yang

8. REFERENCES
[1] R. C. Arkin.Behavior-Based Robotics. MIT Press, 1998.
[2] J. Barraquand, B. Langlois, and J.C. Latombe. Robot motion

planning with many degrees of freedom and dynamic
constraints. In H. Miura and S. Arimoto, editors,Robotics
Research, volume 5, pages 435–444. MIT Press, 1990.

[3] Maxim A. Batalin and Gaurav S. Sukhatmen. Coverage,
exploration, and deployment by a mobile robot and
communication network.Telecommunication Systems,
Special Issue on Wireless Sensor Networks, 26(2):181–196,
2004.

[4] W. Keith Edwards.Core Jini. Prentice Hall, 2001.
[5] Barbara J. Grosz and Sarit Kraus. Collaborative plans for

complex group action.Artificial Intelligence, 86(1):269–357,
1996.

[6] Andrew Howard, Maja J. Mataric, and Gaurav Sukhatme. An
incremental self-deployment algorithm for mobile sensor

networks.
[7] Andrew Howard, Lynne E. Parker, and Gaurav S. Sukhatme.

The sdr experience: Experiments with a large-scale
heterogenous mobile robot team (extended abstract). In9th
International Symposium on Experimental Robotics 2004,
Singapore, Jun 2004.

[8] Boyoon Jung and Gaurav S. Sukhatme. Tracking targets
using multiple robots: the effect of environment occlusion.
Autonomous Robots Journal, 13(3):191–205, 2002.

[9] James Kennedy and Russell C. Eberhart.Swarm Intelligence.
Academic Press, 2001.

[10] K. Ko, B. Stewart, D. Fox, K. Konolige, and B. Limketkai. A
practical, decision-theoretic approach to multi-robot
mapping and exploration. InProceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems,
2003.

[11] Kurt Konolige. A gradient method for realtime robot control.
In Proceedings of IROS, 2000.

[12] Kurt Konolige, Karen Myers, Enrique Ruspini, and
Alessandro Saffiotti. The saphira architecture: A design for
autonomy.Journal of Experimental and Theoretical AI,
1996.

[13] V. Lesser, C. Ortiz, and M. Tambe, editors.Distributed
Sensor Networks: a multiagent perspective. Kluwer
Publishing, 2003.

[14] R.G. Ogier, F.L. Templin, and M.G. Lewis. Topology
dissemination based on reverse-path forwarding, February
2004. IETF RFC 3684 (Experimental).

[15] Charles L. Ortiz and Eric Hsu. Structured negotiation. In
First International Conference on Autonomous agents and
multiagent systems, 2002.

[16] C.L. Ortiz, A. Agno, P. Berry, and R. Vincent. Multilevel
adaptation in teams of unmanned air and ground vehicles. In
Proceedings of the First AIAA Unmanned Aerospace
Vehicles, Systems, Technologies and Operations Conference
and Workshop, 2002.

[17] D.V. Pynadath and M. Tambe. Automated teamwork among
heterogeneous software agents and humans.Journal of
Autonomous Agents and Multi-Agent Systems, 7:71–100,
2003.

[18] A. Saffiotti, E. H. Ruspini, and K. Konolige. Integrating
reactivity and goal-directedness in a fuzzy controller. In
Proceedings of the 2nd Fuzzy-IEEE Conference, 1993.

[19] A. Saffiotti, N.B. Zumel, and E.H. Ruspini. Multirobot team
coordination using desirabilities. InIn Proc. of the 6th Int.
Conf on Intelligent Autonomous Systems (IAS), July 2000.

[20] R. Vincent, P. Berry, A. Agno, C. Ortiz, and D. Wilkins.
Teambotica: a robotic framework for integrated teaming,
tasking, networking, and control. InAutonomous Agents and
Multiagent Systems Conference, 2003.

[21] D. E. Wilkins, T. Lee, and P. Berry. Interactive execution
monitoring of agent teams.Journal of Artificial Intelligence
Research, 18:217–261, March 2003.

[22] O. Yadgar, S. Kraus, and C. Ortiz.Scaling up distributed
sensor networks: cooperative large-scale mobile-agent
organizations, pages 185–218. Kluwer publishing, 2003.

867

