Software Architecture at a Large Financial Firm

George Fairbanks

Carnegie Mellon University
School of Computer Science
5000 Forbes Avenue
Pittsburgh, PA 15213 USA

george.fairbanks@cs.cmu.edu

Abstract

System builders have historically used informal softwaahiec-
ture models to understand options, make choices, and coioaten
with others. Research into software architecture over tw fif-
teen years has indicated that more precise architecturelmoty

be beneficial. At a large financial firm, we applied preciséveamfe
architecture techniques on four software projects andekieri-
ence has revealed a number of practical issues. We madelihe fo
lowing observations across the projects: 1) Architectuod@hs can

be used to bridge gaps between business requirements dnd tec
nology, 2) A small collection of techniques and a detail kiaob
practical and useful in a variety of projects, 3) Architeetmod-
eling techniques amplify the skills of the architects, 4) Adel of
domain concepts and relationships is helpful when buildirai-
tecture models, and 5) It is difficult to know when to stop addie-

tail to your architecture model. We believe that these alagiems
motivate future research and can help practitioners mafte/ae
architecture more effective in practice.

Categories and Subject Descriptors D.2.11 [Software Engineer-
ing]: Software Architectures

General Terms Design, Documentation

Keywords Experience report, software architecture, financial in-
dustry

1. Introduction

Daily operations at many companies rely on services pravige
complex enterprise software systems. Software is not teaess
of these companies but it helps or even enables them to do thei
business. Conversely, software engineers understandasefbut
typically not the business it is written for. This disconhéas
to be addressed when building or integrating enterprisevaoé.
Success requires effective collaboration of softwarererggis and
subject matter experts to ensure that the software beirafette
actually provides the services needed by the business.
Software architecture [15] promises to aid this difficulska
Architecture has been a focus of software engineering reiséar
fifteen years [10] and researchers have identified varionsflie

Copyright is held by the author/owner(s).

OOPSLA'06, October 22—-26, 2006, Portland, Oregon, USA.
ACM 1-59593-491-X/06/0010.

Kevin Bierhoff

Carnegie Mellon University
School of Computer Science
5000 Forbes Avenue
Pittsburgh, PA 15213 USA

kevin.bierhoff@cs.cmu.edu

Desmond D’'Souza

Kinetium, Inc.
9901 Spicewood Mesa Drive
Austin, TX 78759 USA

desmond.dsouza@kinetium.com

of incorporating software architecture into software depment
projects, including reduced cost of development [1].

In our view, software architecture involves modeling th&-so
ware being built at a high level, thus expressing the dongoals
(or requirements), architectural structure, and behaisisuch, it
addresses some of the classic challenges of software enigige
For instance, Sommerville includes lack of clarity, requients
confusion, and requirements amalgamation as common pnsble
in system requirements ([16] p. 127). Informal requirersenty
appear clear to the subject matter expert because of herimloma
knowledge but the software engineer, lacking domain kndgde
needs a more precise specification.

Practitioners are starting to apply software architecamen-
dustrial projects [5, 7]. This paper reflects on our expegsnover
the past year with applying software architecture techesgat a
large financial company. This company recently decided toleyn
precise software architecture techniques based on objectted
principles in the early stages of their projects. The firmdwm
improve its existing practice for developing software byngsa
more precise approach that leverages modern results atearch
ture research and practice.

We worked on four projects of significant size and importance
alongside company employees who had not previously useé the
techniques. These four projects are noteworthy for theferdi
ent natures. The first was a greenfield project, unencumbetad
legacy code, while the second was a brownfield project toreeha
an existing system. The third project was focused on vendmi-p
uct selection and integration. The fourth was an overagchinject
whose goals were to coordinate the efforts of three othetsam-
municate this design to senior management.

Most technologies must be adapted from the pure research be-
fore they can be applied in industrial settings [13]. Ouhéecture
modeling technique is a synthesis of ideas from practiceaaad-
emic research. Four elements form the backbone of the wobni
goals models, component and connector models, informatmd
els, and behavior models. The models are based on objectiseand
interactions and rely on notations such as the UML [14]. The f
models are tightly interconnected and thereby allow thbitect to
cross-check her models for completeness and consistdatting
more precise models. Details on our architecture modekah-t
nigue are presented in section [3].

Precise software architecture models were effective iowere
ing problems with designs in progress. Our experience hegp-
ports hypotheses from the research community [15] but wadou
ourselves confronted with practical challenges. Whatésrtie of
software architecture in a company whose area of expediseti
software? Is the software architecture for a brownfieldgubihe
same as for a greenfield project? Is a systematic approaddftto s
ware architecture useful (compared to just doing the besigde

we can)? Are there effective sanity checks for our undedstan ware domain. The goals models also contain concepts froky Jac

of the system to be built, given that domain experts only Hiawve sons problem frames [8], specifically to structure the goaidels
ited time to validate our models? Where does architectui@ &ve and connect them with the domain types.

made specific observations on each of these challengesctinrse

4 of this report, we describe anecdotal evidence for thevatig 2.2 Elements

themes that we found to be true across the four projects. Four models provide the backbone of our architecture tegimni

¢ Architecture models can be used to bridge gaps between busi-A goals model expresses the highest level intent of t_he syste
component and connector model expresses the runtimeesrititi

ness reqU|rem§nts and te(?hnology.)) the system. The information model expresses the vocabidettye
* A small collection of techniques and a detail knob are peatti other models, including types found in the domain. The bigiav

and useful in a variety of projects. model expresses the dynamics of the system as it performs its
¢ Architecture modeling techniques amplify the skills of dre intended functions.
chitects. While these four models provide the backbone to express the

« A model of domain concepts and relationships based on ebject functionality of the system, other models are added as sacgto
oriented principles is helpful when building architectuned- cover other quality attributes such as security or transast The
els. additional models can use sophisticated domain-specifiteiing

e) .) notations or can be as simple as some ad hoc tables in a dpeetds

* it IS d'ﬁ'gUIIt to know when to stop adding detail to an archite The four elements are described in the following sections.

ure model.

. . . . 2.2.1 Goals model
Our experience, even though preliminary and incompleteois

table for three reasons. First, it demonstrates how reseastilts The highest level goal expresses the reason for the systeims e
on software architecture can be applied in an industrititgptSec- tence. Each goal is decomposed into sub-goals and domgirrpro
ond, it can motivate future research. Finally and most ingyly, ties that collectively achieve the goal. This hierarchdatompo-
we believe that our observations can guide practitionerhéir sition proceeds until the sub-goals are small enough to teetty
own efforts to apply software architecture. While we do reltdve accomplished.

software architecture will be a silver bullet, our expederindi- Obstacles to accomplishing goals are also captured in the hi
cates it is an improvement over current practice. erarchy. Strategies for overcoming the obstacle are espdesith

The remainder of this paper is organized as follows. Section additional goals in the goals model.
2 gives an overview of the technique we used. The projects we

worked on are introduced in section 3. Section 4 providedende Legend Goal
for our specific observations. Limits of these observatiaresin-))
emen

vestigated in section 5, and we conclude in section 6. Maintain room goal r
temperature according : :
.)) to user preference Subgoal | : Property :
2. Architecture Modeling Technique 7y Domain terms are underlined

Our architecture technique is primarily a synthesis oftexispub-
lished techniques. Its four primary parts are: a goals madedbm-
ponent and connector model, an information model, and avweha]

ior model. We specifically avoid prescribing a project maragnt Accurately Adjust radiator i . i
R ; . . i Domain property: i
style even though our preference is to apply this technigueni measure current valve to meet { Central heating
iterative process. We view software architecture as ameseging room temperature target temperature | :
task to be completed regardless of the team organizatidressst- — — ——— | ———————
guence of construction. Determine target
temperature from
2.1 Sources user
Our architecture modeling technique is best seen as a systbie
existing modeling techniques and applied to the domainfofveoe Figure 1. Example goals model
architecture. Many challenges of software architectunee Hzeen
addressed in other contexts and it is natural to choose frmwi- A set of sub-goals is assumed to be conjoined to achieve sat-
good approaches. isfaction of a goal, but annotations can be used when suls-goa
The treatment of domain concepts follows from the precise represent competing strategies. In practice, our evaluaif goal
modeling of objects in Catalysis [4]. In general, our moaiglof satisfaction is subjective and yields yes-no decisions. Wark on
domain types has not been as detailed as in Catalysis but it is KAOS describes an objective technique to evaluate pariall sat-
reassuring to know the depth is there if needed. isfaction that provides additional analysis capacity atgkpense of

The treatment of components and connectors is based on thegreater effort. There are additional techniques to evalaltrna-
central ideas from Shaw and Garlan [15, 6]. The pragmatiticpp tive strategies based on degree of goal satisfaction usioghaina-
tion of these ideas to UML2 [14] is taken from the work of Chees tion of domain-based and balanced-score-card-based ag@s,
man and Daniels [2]. Component and connector models were gen trading off more objective analysis with greater effort.

erally drawn as UML2 composite structure diagrams. Domain properties are facts and assumptions about the domai
Behavior models in the form of scenarios are taken from @atal that support the analysis of the goals model. Terms andigeiat
sis while Role Activity Diagrams (RADs) are from Oulds biess ships present in the goals are expressed in the informatimem
process modeling [12]. (see section 2.2.3 below).
The use of goals models patterned after KAOS [11] and allows Ideally the goals model would form a simple tree but it is ofte
the expression of competing architecture desires as in ABAMYy- the case that a sub-goal may support more than one highsr-lev

ses [9], as well as items more in the business domain tharofie s goal. Michael Jackson’s example of the skin of a rocket besed

to provide an aerodynamic surface as well as a containethtor t prefixed with either “provided” or “required” to imply sugppts or
propellant shows how one sub-goal can satisfy two goalhdad consumers and given a name corresponding to the types that flo

cases we attached the sub-goal to multiple parent goals. across it.

The goals models can be represented textually, using aeimpl Connectors are not merely lines on the diagram. We are able
indented view in a word processor, or graphically, using>adad- to do informal reasoning about system behavior once coargect
line diagram (Figure 1 gives an example). Graphical diagrtake have appropriate properties. A common analysis is deténmihe

more effort to maintain but are more quickly understood bg-no maximum staleness of data by assigning flow rates to the cenne
architects and clearly express the cases where goals hdtiplenu tors. However, we have not attempted reason formally alystes
parents. Finally, goals models in the style of problem fraicen be properties by analyzing connector protocols.
created to express domain details more richly.

Goals are connected to the domain concepts they either con-2.2.3 Information model

trol or observe (use as inputs). Decomposing a higher-igoel The information model expresses the terms in the domain end r
typically relies on domain properties (central heating un exam- lationships between the types. It is not a stored data madehb
ple). Goal decompositions often follow a pattern (calledsfe by siead a conceptual model. Our models are often relatedghrou
Jackson) such as the control pattern in our example. refinement, though the refinement is rarely formally expredse-

Goals models can start out quite informal and be tightened up -5 se of the effort required. For example, there is usualljna
over time. This property makes them useful at stages of ie@r formation model that documents the types and relationsiips
when there are many unknowns. Goals models can also help in th e goals model, another for the blackbox component andezsnn
partitioning of a large task across multiple teams. tor model, and another for the whitebox component and cdonec
model. In detailed modeling, each port can have its own mésr

) tion model describing the relationship between types froendo-
The component and connector model expresses the runtime com main and datatypes passed along the connector.

ponents, connectors, and ports in the system. For the mdsbpa
use of these models is conventional so the description efé till
be brief and focus on a few points of difference.

2.2.2 Component and connector model

Legend: UML Static Radiator Control | 1 -controls | Radiator
Structure Diagram. * o valve setting

Each classifier * *
represents a concept.

Room temperature Temperature
Control [0 Radiator

(Blackbox) - target - measured

1 1
- preference 1 * Room
Temperature
E” A —

room temperature

User preference

Figure 3. Example information model

Used diligently, the information model ensures consistsage
of vocabulary and reduces the chance that subject mattertexp
architects, and developers will have different intergietes of do-
main terminology. Invariants can be used to express théioela
ships between domain terms, e.g., relating a person’s aybieth
date. When it is not possible to persuade the various stédeiso
to standardize their vocabulary we use “convenience atedj to
encode related concepts, e.g., synonyms, and then coheettd

Legend port binding existing attributes using an invariant.
connector COmPO“em [Information models can be represented as textual tables in a

port word processor or graphically using UML static structur@gdams
(example in Figure 3). In every case it includes a textualngefi
tion of the concepts used. In our example, temperature woeld
defined as an absolute measurement in degrees Fahrentest (ra
than qualitative measures like “hot”). In that sense therimiation
For many systems it is sufficient to create just two levels of Model fulfills the role of a glossary but is more useful beeares
refinement, which we call the blackbox and whitebox (exaniple lationships between concepts can be encoded more precisely
Figure 2). The blackbox component and connector model tepic
the system to be built as a single component and also contains

Figure 2. Example component and connector model

2.2.4 Behavior model (use case model, scenario or RAD)

external systems that it interacts with (omitted in the eglehn In The behavior model expresses the behavior of the systeran Oft
the whitebox component and connector model the components o this is the most difficult part of modeling architecture amdvee

the inside of the system to be built are shown along with Ipigslto use a variety of techniques that vary in their expressive@es!

the blackbox ports. Limiting modeling to two levels of refinent difficulty.

provides clarity when it works, but occasionally the arebitis Scenarios are an ordered sequence of actions performed on
forced into more than two levels and this simple nomenotatan the system by actors. A scenario describes one possibleatise p
work against clarity. through the system, not all possible paths. They are easpde;

As a weak surrogate for richer descriptions for ports and con effective at engaging subject matter experts, and refetadtbw-
nectors, we sometimes use a simple naming convention. Thespo ever, it is also impossible to describe all possible systehaiors

with scenarios and time-consuming to keep them updatedeas th case diagram itis easier to visualize. Scenarios do notreequuch

architecture evolves.

up-front effort but keeping more than just a few updateddakae.

Figure 4 shows an example scenario where concepts from theRADs take the most time but provide details on sequencing of

information model are underlined and actions from the use ca
model are italicized. The architect can cross-check mdaelsok-
ing for concepts in the scenario that are missing from thermé-
tion model and vice versa.

Scenario name: Vacation temperature adjustment
Actors: Hugo, the homeowner

Initial state: System has been programmed to run tempera-
ture at 72 during the day and 66 at night

Steps:

1. Hugo uses the control panel to set the temporary vacation
temperature to 55 for three days

2. Since the measured temperature is currently above
the targettemperature, the system turns off the
radiator control.

3. Later that day, the measured temperature falls below
the targettemperature so the system turns on the
radiator control.

4. Three days after Hugo enables vacation mode, the sys-
tem changes the temperature program to the previous
one.

Figure 4. Example scenario

behavior not found in the other models.

Choosing the setting for the detail knob is an important phrt
deciding on the process for using the architecture teclenigbis
report does not prescribe process details but it is easy dgiime,
for example, that in a spiral process the architect wouldtiset
detail knob low on the first pass and higher on subsequenépass

3. Software Projects

All of these projects took place at a large financial firm. Many
large financial firms, including this one, have emerged frem r
peated mergings of smaller firms, each with its own set ofrinfo
mation systems, yielding a great variety of systems withénfirm.
Reference data is often fragmented across these multiptersy,
making conceptually simple tasks rather difficult.

The firm is beginning to use software architecture modelimdy a
these projects are among the first. Some architects areirhél t
employees while others are contractors but all participatpeers
on the project teams. Most software projects within the camyp
including these projects, are developed by a team compo$ed
players from different departments.

Precise modeling and software architecture were identified
senior management as tools that could help improve softwzak
ity and project efficiency. Adherence to the old process didre-
quire the use of any particular software engineering tepkes but
did require the use of specific document templates thattefédyg
imposed a waterfall style process. Since there were noxistirey

The UML use case model is a graphical map of use cases thatuniform techniques in place, nor any design metrics, it wapos-
provides an at-a-glance overview of who uses a system antl wha sible to take measurements to show improvement.

they can do.

The following sections describe four projects where thduiarc

In order to model all of the possible system behaviors, we use tecture modeling technique was applied and at least oneecfuh

Role Activity Diagrams (RADs). A RAD is a graphical represen
tation of use cases that expresses both who participateslhasv
the permissible ordering. Parallel activities can be depibecause

thors was the lead architect. The first three projects detl man-
proprietary technology and we have some freedom to disbess t
domain details but for the last project, labeled just Proigcwe

RADs are based on Petri nets. Simple RADs are easy to credite an can describe only its use of the architecture technique.

understand, but this can fall away quickly with slightly rm@om-
plex RADs.

2.3 Detail knob

The benefits of architecture models must be weighed agdiast t
costs, especially the time it takes to develop them. For eatte
elements listed above, we have a conceptual detail knolvehaan
twist to build simple or complex versions of the models. Facte
project, and even for different times on the same projecset¢he
detail knob to balance the benefits with the time investmerié
architectural models.

For goals models, it is the least effort to create textuasioais
and to focus on the highest level goals. More detail can becadd
by using the problem frames style of goals models and by gddin
more sub-goals.

For component and connector models, starting with a tekaial
of components, connectors, and ports is the least effoiitcBing
to a graphical representation of these components and tades
more effort but provides models that are easier to visuale
tailed port and connector descriptions provide more vahtaan
be analyzed with respect to various quality attributes atbpol
conformance.

For information models, a simple textual dictionary of dama
types provides substantial value. The addition of invdsida en-
code relationships and presentation as a graphical UMic static-
ture diagram both help precision but take more time.

3.1 Identity and Entitlement Management: Documentation

and coordination

This project dealt with identity and entittement managemén
small companies, keeping track of employees and what ressur
they have access to is straightforward. In large compantesrev
employee records might be stored in multiple repositoriestae
number of systems they might have access to numbers in the tho
sands, the job of tracking entitlements becomes a signifidfzed-
lenge. An entitlement is an ability to do something to a reseu
for example, the ability to login to a server or the abilityetcecute

a transfer of up to $10,000 between accounts.

This project arched across three constituent projectsti&nt
ment review, provisioning/de-provisioning, and autheation/auth-
orization. The latter two can be purchased from vendors ewhil
at the time it was not possible to purchase an acceptabldeenti
ment review application. All worker entitlements are suggmb
to be reviewed, so those entitlements must be collected esxd p
sented for review. Some of those systems can be provisioméd a
de-provisioned through a central software application soche
entitlements can be checked at runtime via the autherdgivatith-
orization application. In a smaller company it might be floss
to connect every system with entitlements to the provisigfie-
provisioning system but in this large company there werertaay
legacy systems for that option to be practical.

The technology goals of using software architecture modats

For behavior models, a list of supported use cases provitles a to coordinate the three constituent development projédésti-

overview of system functions. When presented as a graphgeal

fying in advance possible points of concern, enabling plagn

and ensuring well-informed product purchases. The comoadni
tion goal was to aggregate the three designs and commurticate
senior management how they collectively would solve idinti
business problems.

Procedurally, work on this project started by mining theigies
documentation from the three constituent projects. In tfvthe
three projects, this documentation had been built by vendtiose
products were final candidates for purchase. Consequémtlyle-
sign documents contained a variety of models ranging from de
tailed designs to interface definitions to architecturatigis. In the
end, a stack of component and connector models had beepdreat
with the most abstract model showing the identity and emtignt
management component and its connections to externalnsyste
its refinement showed the components for the three constitue
projects, their connections between each other, and thiknigis to
the higher-level ports. The tidy refinement of the final medehs
not mirrored in the creation of the models the creation ofrtivel-
els involved repeated back-and-forth between discovedetdils
about the lower-level projects and the revision of modekxmress
them.

A goals model had been created for the parent of this project,
so the goals model for identity and entitlement managemerst w
built to demonstrate satisfaction of the higher level gdgimilarly,
goals for the three constituent projects were built to destrate
satisfaction of the identity and entitlement managemeatgjo

to document the existing system. We were able to build models
from the details we did know but our confidence in them was
low because we had no experts to validate them. The working
relationship improved over time but there was not time to enak
improvements to the models of the existing system, whictainegl

the way that the architecture techniques could help theptoj

An additional hindrance was the need for the implementation
team to receive documents in a particular, non-architatfarmat.
Consequently, we produced architecture models and shoedhor
them into the document template. As such, most design dismss
did not make reference to the architecture models untilitatee
engagement. The implementation team has warmed up to the mod
els, however, and has agreed to make them the central meohani
for discussing the design in the next set of enhancemenésiatdd
to follow the current set.

The project used the simple goals model; a detailed infdomat
model that expressed many domain terms, synonyms, and seme i
variants; a minimal behavior model because of limited imfation;
and an acceptable blackbox component and connector motel bu
known insufficient whitebox model.

3.3 Provisioning/De-provisioning: Product selection

The provisioning/de-provisioning project is a constitugroject in
identity and entitlement management. The purpose of thersys
is to provide a central place to administer workers entidets.

Subject matter experts were presented with a rough draft of a Agministrators can create or remove entitlements usingiglesi

scenario and participated in its cleanup. The primary drfoe
the behavior of the system was a single large (30-step) doena
describing the full lifecycle of a worker as it relates to thse of this
system. This scenario was built at the blackbox level foipifogect
and was later extended at the whitebox level to express seige
of behavior between the three constituent projects. Ocnaly
other scenarios were sketched but were not maintained omer t
or included in the documentation.

In summary, this project used the simple style of goals nwdel
with refinements up to its parent project and down to the doestt
projects. Component and connector models for both the btack
and whitebox were created. A detailed information model was
created but only at the level of the goals model (it was noheefi

user interface and, through connections to managed systems
actual entitlements are changed on the affected systems.

The goal of creating architecture models for this system was
to ensure that the product selected would match the needmof t
business, to define a common model of entitlements to beghgre
all programs, and to produce a whitebox component and ctomec
model of the system to enable the creation of workflow scripts

A significant challenge on this project was the collectionnef
formation to create architecture models. The team withincom-
pany that was evaluating the vendor product was not coddcat
with the architects and was under tight deadlines to dematest
feasibility, leaving little time to discuss what they hadreed. The
vendor lacked the kinds of documents that would help thetaats

to add new concepts that appeared in the whitebox). RADs were y,iid an architecture model. A significant obstacle, itiigiaot de-

initially created to express the system behavior but ovee tonly
the single end-to-end scenario was kept updated.

3.2 Entitlement Review: Brownfield Design

The entitlement review project is a constituent projectarndath
the identity and entitlement management project. The systas
been evolving for a few years and collects entitlement datty d

tected, was that the vendor and our company used the samie term
nology with different definitions. A detailed informationagel of
the vendor product enabled us to identify and overcome this o
stacle. Eventually a purchase decision was made withoutgav
complete confidence in the compatibility of this producthntihe
overall identity and entitlement management project.

This project used the simple goals model like other identity

from many systems in the company. Reviewers can browse data@nd entitlement management projects. The blackbox mods| wa

for the workers they are responsible for and can conducbogieri
official reviews to attest that the workers have no more lentiénts
than necessary. The system was in use by just one divisidmeof t
company and we designed extensions to support is use by tile wh
company.

The purpose of creating architecture models for this ptejes
to express the requirements, communicate these requiterten
the development team, and to design a solution that was dditga
with the peer identity and entitlement management systems.

detailed and had ports appropriate to support what was kradwn
the vendor product. The whitebox model was known to be deficie
since the vendor had no documentation and a limited amount of
time was allocated to discover the architecture.

3.4 Project D: Greenfield Design

Project D is concerned with the architecture of a systemisttatbe
developed over several years. The project is aimed at mgngjar-
ity into this longterm effort early on. The system is bestalied

Management decided to use the implementation team for the as a greenfield development effort to provide functiondtliigt no

existing product to build the next version. Since the asth#
and the implementation team were in different divisions o t
company, the priorities of the two were not aligned inigialThe
architecture modeling for this project started out poorgcduse

existing system in the company covers.

Even though the necessity for the system had been recognized
the requirements for the system were only understood inrtbeh
est terms. Project D developed the business and softwaniesrc

the development team had no design models, would not shareture for the system based on input from subject matter expenit

implementation artifacts like the database schema or asdeland
was too busy working on other projects to meet with architect

marily through a precise goals model. This precise goalseinod
in turn required a comprehensive domain model. Finallyckitax

and whitebox architectures of the system were derived frioen t
goals and domain models.

The goals and domain models were the core deliverables of pro
ject D. They required substantial effort to produce and thgext
matter experts rated them as the greatest valueadd of tfecipro
The difficulties in developing goals and domain models ferghs-
tem arose mostly from the nature of the system as a visionary s
tem that even subject matter experts had only vague and ctordli
ideas about. While domains in the other projects were walkun
stood and the subject matter experts were able to focus mu-art
lating the system functions, in Project D the domain was hand

scenarios, to communicate with management how signifitasit t
problem was and that it was not just a data translation isased
on the shared understanding facilitated by the architeatuvdel,
management allocated resources to solve the problem.

The use of architecture models to bridge gaps between busi-
ness and technology was most apparent in project D. In thjeqir
there were no implemented solutions in existence and notéch
ogist could start writing code until the problem was desaliland
understood. Many iterations were required between subjextt
ter experts and architects before both were satisfied wehsth
lution. The groups communicated their ideas and expresssd t

forced us to create a domain model for the system as part of the concerns through the architecture models. In addition bogone

project.

We elicited the goals model from the subject matter experts
through example scenarios of what should be possible to to wi
the system. Using these scenarios, the architect createdtafla
goals model that that was then refined with the subject master
perts. This process proved to be surprisingly efficientscoivering
goals and the domain of the system.

4. Observations

In reflecting on these four projects we have noticed sintitithat
are described in this section as themes. In each project wecakée
to use the models as a central discussion point between bfecsu
matter experts and the technologists. We found that our setaf
techniques, if allowed to vary in the level of detail, could iised
on projects with quite different character. Our use of infation
models, even at the most abstract levels of architecturgjmpaor-
tant in expressing the understanding of the domain. Unfatily,
software architecture modeling is not a silver bullet buth#tects
should expect that learning the techniques will make themerat
fective. Finally, we still find it challenging to decide whém stop
modeling and move on to other development activities.

4.1 Bridge from business to technology

Across the four projects a strong theme was the use of moadels t
bridge the gap between the business and technology doridies.
best example from the identity and entitlement managememnt p
gram was the use of architecture models to communicate the de
sign of the system to management and other interested teams d
ing a meeting. The presentation included the goals modfr-in
mation model, component and connector models, and an exaferp
the end-to-end scenario. It was effective enough that tdéeeaoe
could immediately ask relevant detailed questions abaasathat
concerned them.

Software architecture decisions are often of such higH teeg
itis impossible to strictly categorize them as either besgor tech-
nology decisions. For example, in an early stage of entelgme-
view we addressed a problem regarding data quality. Theetonc
was that the existing team receiving data feeds could nolves
problems with the increased number of data feeds, as regolvi
each problem required contacting the feed provider andtizng
a resolution. We considered two solutions. The first was ¢phkbe
data collection centralized but to delegate respongibitit data
quality issues to the feed provider. The second was to paethgn-
tralize the data collection, thus limiting the number ofdfeand the
number of groups that the central team would have to coamlina
with. Both alternatives address the same goal but are rexhkrkn
that one is a technology solution and the other is a busiesp®n-
sibility solution. This demonstrates how architectureenfsits on
the boundary between business decisions and technologgratec
and how the goals modeling can uncover such options.

A challenge in the provisioning/de-provisioning proje@smo
find a representation for entittements that worked across/ém-
dor products. We were able to use architecture models,dmgu

primary vehicle for conveying design proposals, the peaichi-
tecture models exposed fuzzy terms and fuzzy thinking. Tiae h
archical nature of the models aided this iterative procksgar-
ticular, goals are decomposed into sub-goals and typescamd
posed into subtypes, allowing the group to quickly zoom onfr
high-level overviews to the relevant detailed models.

4.2 Collection of techniques plus detail knob

The architecture modeling technique provided a backborfeusf
elements to express the core functions of the system bwedlo
us flexibility in choosing the level of detail. In each prdjee set
the detail knob differently to respond to the needs of thgegto
since, for example, it is not a good investment of time to nhode
implementation details when you are planning on purchasing
vendor product. We found that despite the differences batwiee
projects, the core set of techniques was largely sufficeeakpress
our intent.

All of the projects except for project D used the simple stfie
goals modeling that lacked the problem frames style of natiiug
domain details. While project D was unprecedented and igdsgo
still quite unclear, the other projects could rely on a gehshared
understanding of the domain as a substitute for detailetirgod-
eling.

When concerns arose we were able to turn the detail knob up
on that particular area. For example, when it became apptiran
the existing entitlement review application and the priovimg/de-
provisioning application might have incompatible viewsaotitle-
ments, it was possible to write more detailed scenarios aild b
more detailed information models.

The entitlement review project required the creation ofiadd
tional models beyond the core set. A spreadsheet was bugh-to
code the application user roles and the set of entitlemexts lead.
Another spreadsheet was built that tracked the referantegrity
of two source data feeds over time as it was cleaned up and be-
came more complete. The level of detail used on each pragect i
summarized in Table 1.

4.3 Model of domain concepts

Our observation that a model of domain concepts is usefliet t
architecture modeling level is not novel but neither is itversally
recognized. Subject matter experts may be in a hurry to itbesar
systems functions and technologists may be in a hurry toritbesc
how those functions will be implemented, but we have found it
essential to build an information model that underpins kad
ensures that concepts and relationships are well undetstoo

In the entitlement review project, subject matter expesnf
many domains contributed to the project requirements. \&odt
ered that their terms might overlap but they did not alwaysegn
relationships or definitions. On this project synonyms weym-
mon so we used convenience attributes and invariants tadenco
them (refer to section 2.2.3).

A central challenge on the provisioning/de-provisionimgject
was the structure of entitlements. Each system to be pomési

Models
Project Goals Component and Connector| Information Model Behavior Model
(character) Model Model
Identity and Entitlement Management| Simple Detailed blackbox, Sufficient for simple | Detailed single
(documentation) detailed whitebox goals model end-to-end scenario
Entitlement Management Simple Acceptable blackbox, Detailed Minimal
(brownfield) insufficient whitebox
Provisioning / Deprovisioning Simple Detailed blackbox, Sufficient for simple | Minimal
(product selection) minimal whitebox goals model
Project D Detailed | Acceptable blackbox, Detailed Simple scenario
(greenfield) idealized whitebox

Table 1. Level of detail by project

had its own model of entittements and we needed to produce anecessary to answer our question. It is our belief that ifvitve-

model that covered them all and was able to encode role-lzased
cess control. After creating an information model that weédt
would be sufficient, we discovered that often resources areip
sioned indirectly. For example, the provisioning systerghmhactu-
ally create new entries in an LDAP server in order to entitleess
to another system. The precise encoding of our understguadian
information model enabled us to express our understandidga
detect when our design was incompatible with new requirésnen

Unlike the other three projects, project D entered into aaiom
still being explored by the subject matter experts (and ritweyi of
their title was not lost on the group). Rather than using ttieri
mation model to simply detect overlapping terminology oswee
knowledge transfer between subject matter experts andtesth
project D used the information model as a key working model by
the subject matter experts themselves to encode altegratissi-
bilities and grow their understanding of this new domaire preci-
sion of the model enabled them to detect inconsistencidstitir
proposals and to communicate them to the architects andsithe
ject matter experts.

4.4 Architecture techniques amplify skill

Some tasks have the property that, after a person has béedtra
to do them, the work of one person cannot be differentiatechfr
another. For example, after teaching Ann and Bob to fill aueti
cards, we do not expect that one will do it better than therothe

Software architecture modeling can amplify the skills of an
architect but cannot guarantee success [5]. While we steoqddct
that trained architects will have greater insight and hagess to
more precise techniques, we should not be surprised whem&mn
use the techniques effectively and Bob struggles.

All models are abstractions of more complicated systenthdn
hands of an expert, models can be used to comprehend pespefrti
systems that would otherwise be too complex. The choice aftwh
properties to represent in a model is subjective so modeldath
to be useful either if they focus on unhelpful propertiesfahée
models cannot be analyzed by the architect. Two of our pi®jec
demonstrated examples of these failings.

On the provisioning/de-provisioning project, over the rseu
of many meetings our architects were unable to validate ahat
overall model of entitlements was compatible with the veisdo
model despite having access to published documentatitarnad
documentation, and even the vendors implementation tedwa. T
vendor’s implementation-level model made extensive usaaif-
modeling ideas like key-value pairs but did not express vitnat
stances would be present at runtime. When questioned, tuorve
could tell us what key-vlaue pairs would be present in varisitu-
ations, indicating that while they understood their pradbey had
not encoded the necessary information in their models. Eme v
dor had produced an accurate model that abstracted awalsdeta

dor’'s team had been knowledgeable regarding architectodem
ing then their models would be more helpful for our task ars$ le
like literal drawings of the data structures.

On the entitlement review project, one of the goals was te edu
cate an apprentice architect. After training he was ableddyrce
syntactically correct architecture models, the same amtire ex-
perienced architects. Due to his lack of experience, hokyée
models at the time tended to be straightforward expresdiormat
he had learned from subject matter experts and he was noblget a
to use the formalization to detect inconsistencies or exjga®s in
the design. As a consequence, the architecture models titbhmo
him to improve the quality of the system design.

Not all subject matter experts in project D embraced theiarch
tecture models. Those that rejected the technique outcigtin-
ued to create documentation with imprecisions and corttiadis
that would have been avoided with the goals and informatiod-m
eling techniques. Those that embraced the models avoides th
problems and were able to help the architects remove prabiem
the design. This experience suggests that the models watalgst
in designing the system.

4.5 When to stop adding detail

With both an ability to turn up the detail knob on every model
type and an ability to borrow more modeling techniques from t
source techniques, it was often tempting to continue addétgil

to our models. In formal or informal reviews, architectsofaisked
each other why they chose the level of detail they did, or even
expressed the opinion that more detail should have beerdadde
particular places. Adding more detail must always be traoféd
with an additional time investment to add that detail. While
cannot offer a universal rule, we can describe some caseswand
decision process. In general, we traded off model creatifunte
with the models ability to answer questions.

The choice of where to stop the model was easiest in the iden-
tity and entitlement management project because each thfrie
constituent projects had an architecture model itselfs Thds not
license to add all possible detail because in the whitebar-co
ponent and connector view showing the three constituenegio
there were approximately sixty ports, either for commutidrato
the peer systems or to external systems. While we had thelmode
ing capability to document the datatypes and operationsdoh of
those ports, we declined to add this detail and forego théyatn
detect problems at that level.

The provisioning/de-provisioning project was targetegrat-
uct purchase from the start. The important questions to beemed
by the model included whether or not the vendor product ceupd
port our model of entitlements and if it could connect to thieeo
projects. We did end up creating a whitebox component ane con
nector model of the vendor product because it supportedrtie c

ation of workflows and the workflow authors would need to know
that level of architecture.

The choice of where to stop was most challenging on the brown-
field entitlement review project. The enhancements for the ver-
sion ranged from changes visible at a highest level of mogeb
small changes to input datatypes. One particular incidentsout:
The developers informed us that one of our requirements dvoul
entail changes to 110 stored procedures. While this workimas
evitable for this release, we wanted to be sure to avoid airpilob-
lems for subsequent releases and the architects thoughkriegs
how to prevent future problems. Two problems emerged: Rhist
developers would resent the architects encroaching ondétiiled
design, and second, we did not want to invest the effort toenadk
of our models sufficiently detailed to encode all such detdine
camp of architects subscribed to the crisp boundary thebgreva
line was drawn and the architecture stopped there. Thelooispd-
ary architects would not tell the developers how to avoidénmen-
tation problems but instead write quality attribute regmients, for
example, that future changes of a certain nature must betable
be made within a certain time. The other camp of architects-ad
cated a design wedge theory where more architecture detaits
modeled at the top levels but tapered off as the model appeodac
the implementation components. In the end we produced p cris
boundary architecture model and had an informal chat witdt:
velopers about implementation options.

Due to the novel nature of project D, the key question was
feasibility rather than balancing various quality atttémi Because
of this restriction, architecture modeling progressedl itriecame
apparent that any given component could be constructedoaps
already existed. Each component had a corresponding high le
goal motivating it and in most cases its subcomponents wefre n
specified to allow for latitude in implementation. It was pibée to
stop modeling at the highest level of components becauskethe
question of feasibility could be answered at that level.

5. Limitations

Ideally, this report would be produced by an independentypar
that was neither invested in the application of the archirec
technique nor responsible for its development, as wereuti®es

of this report. To the best of our abilities we have tried tefkeur
observations objective.

Furthermore, an ideal report would compare some quality at-
tributes of project delivery with and without the softwaretstec-
ture modeling. Since such metrics were not available indhigs-
nization before we started we were not able to make a meaningf
comparison.

While this report focuses on the first year of usage of the ar-
chitecture technique, we do not yet know how it will fare digri
its longer-term application across the whole firm. Morepwar do
not present evidence of reproducibility at other firms witffedent
existing customs. However, our observations can serve aariyn
sanity check of our approach and guide future developmedt an
research.

Finally, the architects participating in these projecteatly
have a track record of successful project delivery and argen-
eral, highly knowledgeable regarding software enginegtireory
and practice. Since not all architects will have a similacksa
ground, we have little evidence that the architecture tegtn
could be learned and effectively applied by other archéte€in
the other hand, we did provide some indications that inezpeed
architects benefit from using the technique.

It is possible that many readers of this report, as expessfin
ware architecture, will be disappointed at the apparenbgaween

creation of UML models instead of using a special-purposaiar
tecture description language and we have never been abteve p
that our systems have any strong property, such as absedeadf
locks. In the experience of the authors, however, the teciesi that
we have employed are a significant improvement compareceto th
norm in industry projects. The concepts of components, eonn
tors, ports, goals, and refinements are rarely represeritacany
precision in the all-too-common PowerPoint architectufg®m
this perspective, the use of UML with its mature tool suppe
pragmatic choice and the lack of formalism in other areagst-j
fied because their benefits might not outweigh the time invest
required.

6. Conclusions

We have presented an architecture modeling technique thaew
lieve has pulled the best ideas from various research mildits.
We summarized anecdotal evidence on its usage in four psapec
different natures across five themes of observations. Thleser-
vations address practical problems of software architec¢hat we
believe have to be faced by many software architects in ipeact
These projects were performed at a large financial compaaty th
bears similarity to many other information technology dépants
that the authors have experienced. Thus we believe our\@ser
tions can guide the application of software architecturgiacti-
tioners in similar situations.

Our observations are based on anecdotal evidence and sugges
future research questions. For example, we make the oliserva
that levels of detail of different models are possibly tiedthe
nature of the project. Quantitative data from a variety afjgcts
could expose relationships between these variables.

Another unresolved issue regards how architecture maglain
used within a company and by whom. It seems inappropriate to
expect every person in the company to learn the technolbggly
some learn it, how should they interact with those that d@ Wdé
have tentatively identified three levels of knowledge rdgay the
models: In Level 1 someone can read a model produced by anothe
In Level 2 someone can create syntactically correct models.
Level 3 someone can use the models to discover flaws in prdpose
designs, to identify areas of the domain that have not yeh bee
modeled, and to evaluate various quality attributes. feutaports
or research could address which people should get which déve
training.

We have not addressed how to decide the balance between in-
vesting time in software architecture versus proceedirty what
has already been modeled. This is an important technoleggitr
tion question as time and money are always scarce commmditie
on commercial projects. In many ways the research community
has taken the high road and investigated highly formal nsotteit
require considerable time investment with commensuratgevia
special domains, e.g., high reliability systems. Many stduman-
agers responsible for non-exotic projects would ask “Wleielfit
can | get if | invest 1, 2, or 3 weeks in building an architeetur
model?”

The response of the project teams to the architecture mbdsls
been generally positive. There are some team members who are
reluctant to learn another technique. Others questionitie in-
vestment compared to just starting coding. Still othergstipthe
techniques in principle but when deadlines get tight thegnteto
their old ways. But overall the people who have participdtade
been happy with the results. They tell us that the modelsdmeao
clear description of the problems and solutions, sometindisat-

what has been shown in research contexts and what we have preing that the clarity we can demonstrate in the problem défimis

sented here from an industrial context. For example, weesidghe

the greatest value.

7. Acknowledgments

We thank Jonathan Aldrich, Bradley Schmerl, David Garlaiti, B
Scherlis, the SSSG, Lougie Anderson, and the anonymouswevi
ers for helpful feedback on this material. The first two awho
wish to acknowledge support through the US Army Research Of-
fice (ARO) under grant number DAAD19-01-1-0485, the Natlona
Science Foundation under grant CCR-0113810, and a resgatreh
tract from Lockheed Martin ATL. The views and conclusionsco
tained in this document are those of the authors and shotildeno
interpreted as representing the official policies, eithgressed or
implied, of the ARO, the U.S. government, Lockheed Martin, o
any other entity.

References

[1] Len Bass, Paul Clements, and Rick Kazm&uftware Architecture
in Practice Addison-Wesley, 1998.

[2] John Cheesman and John DanieldML Components: A Simple
Process for Specifying Component-Based Softwadelison-Wesley,
2000.

[3] Paul Clements, Felix Bachmann, Len Bass, David Garlame}
Ivers, Reed Little, Robert Nord, and Judith Staffofdocumenting
Software Architectures: Views and Beyordidison-Wesley, 2002.

[4] Desmond F. D’Souza and Alan Cameron Wil@Bbjects,Components
and Frameworks With UML: The Catalysis ApproachAddison-
Wesley, 1998.

[5] George Fairbanks. Why can't they create architectureetwlike
"Developer X"?: an experience report. I@BSE '03: Proceedings of
the 25th International Conference on Software Engineerpages
548-552, 2003.

[6] David Garlan, Robert T. Monroe, and David Wile. Acme: Aitec-
tural description of component-based systems. In Gary avées
and Murali Sitaraman, editor§oundations of Component-Based
Systemschapter 3, pages 47—67. Cambridge University Press, 2000.

[7] Christine Hofmeister, Robert Nord, and Dilip Sosipplied Software
Architecture Addison-Wesley, 2000.

[8] Michael Jackson. Problem Frames: Analyzing and Structuring
Software Development Problem&ddison-Wesley, 2000.

[9] Rick Kazman, Mark Klein, and Paul Clements. ATAM: Methfudt
architecture evaluation. Technical Report CMU/SEI-2000-004,
Carnegie Mellon University / Software Engineering Ingg{u2000.

[10] Jeff Kramer and Jeff Magee. Engineering distributetiveare: a
structural discipline. IrESEC/FSE-13: Proceedings of the 10th
European Software Engineering Conference and 13th ACMSGF3IS
International Symposium on Foundations of Software Eraging,
pages 283-285, 2005.

Emmanuel Letier and Axel van Lamsweerde. Reasoningitabo
partial goal satisfaction for requirements and design reegging.

In SIGSOFT '04/FSE-12: Proceedings of the 12th ACM SIGSOFT
International Symposium on Foundations of Software Eraging,
pages 53-62, 2004.

Martin Ould. Business Processes - Modeling and Analysis for Re-
engineering and Improvementohn Wiley and Sons, 1995.

[13] Samuel Redwine, Jr. and William Riddle. Software tesbgy
maturation. InICSE '85: Proceedings of the 8th International
Conference on Software Engineerimmges 189-200, Los Alamitos,
CA, USA, 1985.

[14] Jim Rumbaugh, Ivar Jacobson, and Grady Boodte Unified
Modeling Language Reference Manualddison-Wesley, 1998.

[11]

[12]

[15] Mary Shaw and David GarlanSoftware Architecture: Perspectives
on an Emerging DisciplinePrentice-Hall, 1996.

[16] lan Sommerville. Software Engineering Addison-Wesley, 7th
edition, 2004.

