
Software Architecture at a Large Financial Firm

George Fairbanks
Carnegie Mellon University
School of Computer Science

5000 Forbes Avenue
Pittsburgh, PA 15213 USA

george.fairbanks@cs.cmu.edu

Kevin Bierhoff
Carnegie Mellon University
School of Computer Science

5000 Forbes Avenue
Pittsburgh, PA 15213 USA

kevin.bierhoff@cs.cmu.edu

Desmond D’Souza
Kinetium, Inc.

9901 Spicewood Mesa Drive
Austin, TX 78759 USA

desmond.dsouza@kinetium.com

Abstract
System builders have historically used informal software architec-
ture models to understand options, make choices, and communicate
with others. Research into software architecture over the past fif-
teen years has indicated that more precise architecture models may
be beneficial. At a large financial firm, we applied precise software
architecture techniques on four software projects and thisexperi-
ence has revealed a number of practical issues. We made the fol-
lowing observations across the projects: 1) Architecture models can
be used to bridge gaps between business requirements and tech-
nology, 2) A small collection of techniques and a detail knobare
practical and useful in a variety of projects, 3) Architecture mod-
eling techniques amplify the skills of the architects, 4) A model of
domain concepts and relationships is helpful when buildingarchi-
tecture models, and 5) It is difficult to know when to stop adding de-
tail to your architecture model. We believe that these observations
motivate future research and can help practitioners make software
architecture more effective in practice.

Categories and Subject Descriptors D.2.11 [Software Engineer-
ing]: Software Architectures

General Terms Design, Documentation

Keywords Experience report, software architecture, financial in-
dustry

1. Introduction
Daily operations at many companies rely on services provided by
complex enterprise software systems. Software is not the business
of these companies but it helps or even enables them to do their
business. Conversely, software engineers understand software but
typically not the business it is written for. This disconnect has
to be addressed when building or integrating enterprise software.
Success requires effective collaboration of software engineers and
subject matter experts to ensure that the software being created
actually provides the services needed by the business.

Software architecture [15] promises to aid this difficult task.
Architecture has been a focus of software engineering research for
fifteen years [10] and researchers have identified various benefits

Copyright is held by the author/owner(s).

OOPSLA’06, October 22–26, 2006, Portland, Oregon, USA.
ACM 1-59593-491-X/06/0010.

of incorporating software architecture into software development
projects, including reduced cost of development [1].

In our view, software architecture involves modeling the soft-
ware being built at a high level, thus expressing the domain,goals
(or requirements), architectural structure, and behavior. As such, it
addresses some of the classic challenges of software engineering.
For instance, Sommerville includes lack of clarity, requirements
confusion, and requirements amalgamation as common problems
in system requirements ([16] p. 127). Informal requirements may
appear clear to the subject matter expert because of her domain
knowledge but the software engineer, lacking domain knowledge,
needs a more precise specification.

Practitioners are starting to apply software architectureon in-
dustrial projects [5, 7]. This paper reflects on our experiences over
the past year with applying software architecture techniques at a
large financial company. This company recently decided to employ
precise software architecture techniques based on object-oriented
principles in the early stages of their projects. The firm hopes to
improve its existing practice for developing software by using a
more precise approach that leverages modern results of architec-
ture research and practice.

We worked on four projects of significant size and importance
alongside company employees who had not previously used these
techniques. These four projects are noteworthy for their differ-
ent natures. The first was a greenfield project, unencumberedwith
legacy code, while the second was a brownfield project to enhance
an existing system. The third project was focused on vendor prod-
uct selection and integration. The fourth was an overarching project
whose goals were to coordinate the efforts of three others and com-
municate this design to senior management.

Most technologies must be adapted from the pure research be-
fore they can be applied in industrial settings [13]. Our architecture
modeling technique is a synthesis of ideas from practice andacad-
emic research. Four elements form the backbone of the technique:
goals models, component and connector models, informationmod-
els, and behavior models. The models are based on objects andtheir
interactions and rely on notations such as the UML [14]. The four
models are tightly interconnected and thereby allow the architect to
cross-check her models for completeness and consistency, yielding
more precise models. Details on our architecture modeling tech-
nique are presented in section [3].

Precise software architecture models were effective in uncover-
ing problems with designs in progress. Our experience herein sup-
ports hypotheses from the research community [15] but we found
ourselves confronted with practical challenges. What is the role of
software architecture in a company whose area of expertise is not
software? Is the software architecture for a brownfield project the
same as for a greenfield project? Is a systematic approach to soft-
ware architecture useful (compared to just doing the best design

we can)? Are there effective sanity checks for our understanding
of the system to be built, given that domain experts only havelim-
ited time to validate our models? Where does architecture end? We
made specific observations on each of these challenges. In section
4 of this report, we describe anecdotal evidence for the following
themes that we found to be true across the four projects.

• Architecture models can be used to bridge gaps between busi-
ness requirements and technology.

• A small collection of techniques and a detail knob are practical
and useful in a variety of projects.

• Architecture modeling techniques amplify the skills of thear-
chitects.

• A model of domain concepts and relationships based on object-
oriented principles is helpful when building architecturemod-
els.

• It is difficult to know when to stop adding detail to an architec-
ture model.

Our experience, even though preliminary and incomplete, isno-
table for three reasons. First, it demonstrates how research results
on software architecture can be applied in an industrial setting. Sec-
ond, it can motivate future research. Finally and most importantly,
we believe that our observations can guide practitioners intheir
own efforts to apply software architecture. While we do not believe
software architecture will be a silver bullet, our experience indi-
cates it is an improvement over current practice.

The remainder of this paper is organized as follows. Section
2 gives an overview of the technique we used. The projects we
worked on are introduced in section 3. Section 4 provides evidence
for our specific observations. Limits of these observationsare in-
vestigated in section 5, and we conclude in section 6.

2. Architecture Modeling Technique
Our architecture technique is primarily a synthesis of existing pub-
lished techniques. Its four primary parts are: a goals model, a com-
ponent and connector model, an information model, and a behav-
ior model. We specifically avoid prescribing a project management
style even though our preference is to apply this technique in an
iterative process. We view software architecture as an engineering
task to be completed regardless of the team organization or the se-
quence of construction.

2.1 Sources

Our architecture modeling technique is best seen as a synthesis of
existing modeling techniques and applied to the domain of software
architecture. Many challenges of software architecture have been
addressed in other contexts and it is natural to choose from known-
good approaches.

The treatment of domain concepts follows from the precise
modeling of objects in Catalysis [4]. In general, our modeling of
domain types has not been as detailed as in Catalysis but it is
reassuring to know the depth is there if needed.

The treatment of components and connectors is based on the
central ideas from Shaw and Garlan [15, 6]. The pragmatic applica-
tion of these ideas to UML2 [14] is taken from the work of Cheese-
man and Daniels [2]. Component and connector models were gen-
erally drawn as UML2 composite structure diagrams.

Behavior models in the form of scenarios are taken from Cataly-
sis while Role Activity Diagrams (RADs) are from Oulds business
process modeling [12].

The use of goals models patterned after KAOS [11] and allows
the expression of competing architecture desires as in ATAManaly-
ses [9], as well as items more in the business domain than the soft-

ware domain. The goals models also contain concepts from Jack-
sons problem frames [8], specifically to structure the goalsmodels
and connect them with the domain types.

2.2 Elements

Four models provide the backbone of our architecture technique.
A goals model expresses the highest level intent of the system. A
component and connector model expresses the runtime entities in
the system. The information model expresses the vocabularyfor the
other models, including types found in the domain. The behavior
model expresses the dynamics of the system as it performs its
intended functions.

While these four models provide the backbone to express the
functionality of the system, other models are added as necessary to
cover other quality attributes such as security or transactions. The
additional models can use sophisticated domain-specific modeling
notations or can be as simple as some ad hoc tables in a spreadsheet.
The four elements are described in the following sections.

2.2.1 Goals model

The highest level goal expresses the reason for the systems exis-
tence. Each goal is decomposed into sub-goals and domain proper-
ties that collectively achieve the goal. This hierarchicaldecompo-
sition proceeds until the sub-goals are small enough to be directly
accomplished.

Obstacles to accomplishing goals are also captured in the hi-
erarchy. Strategies for overcoming the obstacle are expressed with
additional goals in the goals model.

Maintain room
temperature according

to user preference

Accurately
measure current

room temperature

Determine target
temperature from

user

Adjust radiator
valve to meet

target temperature

Domain property:
Central heating

Goal

Subgoal

goal refinement

Property

Legend

Domain terms are underlined

Figure 1. Example goals model

A set of sub-goals is assumed to be conjoined to achieve sat-
isfaction of a goal, but annotations can be used when sub-goals
represent competing strategies. In practice, our evaluation of goal
satisfaction is subjective and yields yes-no decisions. The work on
KAOS describes an objective technique to evaluate partial goal sat-
isfaction that provides additional analysis capacity at the expense of
greater effort. There are additional techniques to evaluate alterna-
tive strategies based on degree of goal satisfaction using acombina-
tion of domain-based and balanced-score-card-based approaches,
trading off more objective analysis with greater effort.

Domain properties are facts and assumptions about the domain
that support the analysis of the goals model. Terms and relation-
ships present in the goals are expressed in the information model
(see section 2.2.3 below).

Ideally the goals model would form a simple tree but it is often
the case that a sub-goal may support more than one higher-level
goal. Michael Jackson’s example of the skin of a rocket beingused

to provide an aerodynamic surface as well as a container for the
propellant shows how one sub-goal can satisfy two goals. In these
cases we attached the sub-goal to multiple parent goals.

The goals models can be represented textually, using a simple
indented view in a word processor, or graphically, using a box-and-
line diagram (Figure 1 gives an example). Graphical diagrams take
more effort to maintain but are more quickly understood by non-
architects and clearly express the cases where goals have multiple
parents. Finally, goals models in the style of problem frames can be
created to express domain details more richly.

Goals are connected to the domain concepts they either con-
trol or observe (use as inputs). Decomposing a higher-levelgoal
typically relies on domain properties (central heating in our exam-
ple). Goal decompositions often follow a pattern (called a frame by
Jackson) such as the control pattern in our example.

Goals models can start out quite informal and be tightened up
over time. This property makes them useful at stages of the project
when there are many unknowns. Goals models can also help in the
partitioning of a large task across multiple teams.

2.2.2 Component and connector model

The component and connector model expresses the runtime com-
ponents, connectors, and ports in the system. For the most part, our
use of these models is conventional so the description of it here will
be brief and focus on a few points of difference.

Temperature
Control

(Blackbox)

Temperature Control (Whitebox)

Sensor

Radiator
Control

Setting

Componentconnector
port

port binding

Room temperature

User preference
Radiator

Legend

Figure 2. Example component and connector model

For many systems it is sufficient to create just two levels of
refinement, which we call the blackbox and whitebox (examplein
Figure 2). The blackbox component and connector model depicts
the system to be built as a single component and also contains
external systems that it interacts with (omitted in the example). In
the whitebox component and connector model the components on
the inside of the system to be built are shown along with bindings to
the blackbox ports. Limiting modeling to two levels of refinement
provides clarity when it works, but occasionally the architect is
forced into more than two levels and this simple nomenclature can
work against clarity.

As a weak surrogate for richer descriptions for ports and con-
nectors, we sometimes use a simple naming convention. The port is

prefixed with either “provided” or “required” to imply suppliers or
consumers and given a name corresponding to the types that flow
across it.

Connectors are not merely lines on the diagram. We are able
to do informal reasoning about system behavior once connectors
have appropriate properties. A common analysis is determining the
maximum staleness of data by assigning flow rates to the connec-
tors. However, we have not attempted reason formally about system
properties by analyzing connector protocols.

2.2.3 Information model

The information model expresses the terms in the domain and re-
lationships between the types. It is not a stored data model but in-
stead a conceptual model. Our models are often related through
refinement, though the refinement is rarely formally expressed be-
cause of the effort required. For example, there is usually an in-
formation model that documents the types and relationshipsfrom
the goals model, another for the blackbox component and connec-
tor model, and another for the whitebox component and connector
model. In detailed modeling, each port can have its own informa-
tion model describing the relationship between types from the do-
main and datatypes passed along the connector.

User

Radiator Control

Temperature
Room

Radiator

valve setting
Legend: UML Static
Structure Diagram.
Each classifier
represents a concept.

1

*

- controls

*1

- room temperature* 1

- preference

*

1
- target

*

1
- measured

Figure 3. Example information model

Used diligently, the information model ensures consistentusage
of vocabulary and reduces the chance that subject matter experts,
architects, and developers will have different interpretations of do-
main terminology. Invariants can be used to express the relation-
ships between domain terms, e.g., relating a person’s age and birth
date. When it is not possible to persuade the various stakeholders
to standardize their vocabulary we use “convenience attributes” to
encode related concepts, e.g., synonyms, and then connect them to
existing attributes using an invariant.

Information models can be represented as textual tables in a
word processor or graphically using UML static structure diagrams
(example in Figure 3). In every case it includes a textual defini-
tion of the concepts used. In our example, temperature wouldbe
defined as an absolute measurement in degrees Fahrenheit (rather
than qualitative measures like “hot”). In that sense the information
model fulfills the role of a glossary but is more useful because re-
lationships between concepts can be encoded more precisely.

2.2.4 Behavior model (use case model, scenario or RAD)

The behavior model expresses the behavior of the system. Often
this is the most difficult part of modeling architecture and so we
use a variety of techniques that vary in their expressiveness and
difficulty.

Scenarios are an ordered sequence of actions performed on
the system by actors. A scenario describes one possible use path
through the system, not all possible paths. They are easy to create,
effective at engaging subject matter experts, and refutable. How-
ever, it is also impossible to describe all possible system behaviors

with scenarios and time-consuming to keep them updated as the
architecture evolves.

Figure 4 shows an example scenario where concepts from the
information model are underlined and actions from the use case
model are italicized. The architect can cross-check modelsby look-
ing for concepts in the scenario that are missing from the informa-
tion model and vice versa.

Scenario name: Vacation temperature adjustment

Actors: Hugo, the homeowner

Initial state: System has been programmed to run tempera-
ture at 72 during the day and 66 at night

Steps:

1. Hugo uses the control panel to set the temporary vacation
temperature to 55 for three days

2. Since the measured temperature is currently above
the target temperature, the system turns off the
radiator control.

3. Later that day, the measured temperature falls below
the target temperature so the system turns on the
radiator control.

4. Three days after Hugo enables vacation mode, the sys-
tem changes the temperature program to the previous
one.

Figure 4. Example scenario

The UML use case model is a graphical map of use cases that
provides an at-a-glance overview of who uses a system and what
they can do.

In order to model all of the possible system behaviors, we use
Role Activity Diagrams (RADs). A RAD is a graphical represen-
tation of use cases that expresses both who participates as well as
the permissible ordering. Parallel activities can be depicted because
RADs are based on Petri nets. Simple RADs are easy to create and
understand, but this can fall away quickly with slightly more com-
plex RADs.

2.3 Detail knob

The benefits of architecture models must be weighed against the
costs, especially the time it takes to develop them. For eachof the
elements listed above, we have a conceptual detail knob thatwe can
twist to build simple or complex versions of the models. For each
project, and even for different times on the same project, weset the
detail knob to balance the benefits with the time investment in the
architectural models.

For goals models, it is the least effort to create textual versions
and to focus on the highest level goals. More detail can be added
by using the problem frames style of goals models and by adding
more sub-goals.

For component and connector models, starting with a textuallist
of components, connectors, and ports is the least effort. Switching
to a graphical representation of these components and portstakes
more effort but provides models that are easier to visualize. De-
tailed port and connector descriptions provide more value and can
be analyzed with respect to various quality attributes and protocol
conformance.

For information models, a simple textual dictionary of domain
types provides substantial value. The addition of invariants to en-
code relationships and presentation as a graphical UML static struc-
ture diagram both help precision but take more time.

For behavior models, a list of supported use cases provides an
overview of system functions. When presented as a graphicaluse

case diagram it is easier to visualize. Scenarios do not require much
up-front effort but keeping more than just a few updated takes time.
RADs take the most time but provide details on sequencing of
behavior not found in the other models.

Choosing the setting for the detail knob is an important partof
deciding on the process for using the architecture technique. This
report does not prescribe process details but it is easy to imagine,
for example, that in a spiral process the architect would setthe
detail knob low on the first pass and higher on subsequent passes.

3. Software Projects
All of these projects took place at a large financial firm. Many
large financial firms, including this one, have emerged from re-
peated mergings of smaller firms, each with its own set of infor-
mation systems, yielding a great variety of systems within the firm.
Reference data is often fragmented across these multiple systems,
making conceptually simple tasks rather difficult.

The firm is beginning to use software architecture modeling and
these projects are among the first. Some architects are full time
employees while others are contractors but all participateas peers
on the project teams. Most software projects within the company,
including these projects, are developed by a team comprisedof
players from different departments.

Precise modeling and software architecture were identifiedby
senior management as tools that could help improve softwarequal-
ity and project efficiency. Adherence to the old process did not re-
quire the use of any particular software engineering techniques but
did require the use of specific document templates that effectively
imposed a waterfall style process. Since there were no pre-existing
uniform techniques in place, nor any design metrics, it was not pos-
sible to take measurements to show improvement.

The following sections describe four projects where the archi-
tecture modeling technique was applied and at least one of the au-
thors was the lead architect. The first three projects deal with non-
proprietary technology and we have some freedom to discuss their
domain details but for the last project, labeled just Project D, we
can describe only its use of the architecture technique.

3.1 Identity and Entitlement Management: Documentation
and coordination

This project dealt with identity and entitlement management. In
small companies, keeping track of employees and what resources
they have access to is straightforward. In large companies where
employee records might be stored in multiple repositories and the
number of systems they might have access to numbers in the thou-
sands, the job of tracking entitlements becomes a significant chal-
lenge. An entitlement is an ability to do something to a resource,
for example, the ability to login to a server or the ability toexecute
a transfer of up to $10,000 between accounts.

This project arched across three constituent projects: Entitle-
ment review, provisioning/de-provisioning, and authentication/auth-
orization. The latter two can be purchased from vendors while
at the time it was not possible to purchase an acceptable entitle-
ment review application. All worker entitlements are supposed
to be reviewed, so those entitlements must be collected and pre-
sented for review. Some of those systems can be provisioned and
de-provisioned through a central software application andsome
entitlements can be checked at runtime via the authentication/auth-
orization application. In a smaller company it might be possible
to connect every system with entitlements to the provisioning/de-
provisioning system but in this large company there were toomany
legacy systems for that option to be practical.

The technology goals of using software architecture modelswas
to coordinate the three constituent development projects,identi-
fying in advance possible points of concern, enabling planning,

and ensuring well-informed product purchases. The communica-
tion goal was to aggregate the three designs and communicateto
senior management how they collectively would solve identified
business problems.

Procedurally, work on this project started by mining the design
documentation from the three constituent projects. In two of the
three projects, this documentation had been built by vendors whose
products were final candidates for purchase. Consequently,the de-
sign documents contained a variety of models ranging from de-
tailed designs to interface definitions to architectural models. In the
end, a stack of component and connector models had been created
with the most abstract model showing the identity and entitlement
management component and its connections to external systems;
its refinement showed the components for the three constituent
projects, their connections between each other, and the bindings to
the higher-level ports. The tidy refinement of the final models was
not mirrored in the creation of the models the creation of themod-
els involved repeated back-and-forth between discovery ofdetails
about the lower-level projects and the revision of models toexpress
them.

A goals model had been created for the parent of this project,
so the goals model for identity and entitlement management was
built to demonstrate satisfaction of the higher level goals. Similarly,
goals for the three constituent projects were built to demonstrate
satisfaction of the identity and entitlement management goals.

Subject matter experts were presented with a rough draft of a
scenario and participated in its cleanup. The primary driver for
the behavior of the system was a single large (30-step) scenario
describing the full lifecycle of a worker as it relates to theuse of this
system. This scenario was built at the blackbox level for theproject
and was later extended at the whitebox level to express sequencing
of behavior between the three constituent projects. Occasionally
other scenarios were sketched but were not maintained over time
or included in the documentation.

In summary, this project used the simple style of goals models
with refinements up to its parent project and down to the constituent
projects. Component and connector models for both the blackbox
and whitebox were created. A detailed information model was
created but only at the level of the goals model (it was not refined
to add new concepts that appeared in the whitebox). RADs were
initially created to express the system behavior but over time only
the single end-to-end scenario was kept updated.

3.2 Entitlement Review: Brownfield Design

The entitlement review project is a constituent project underneath
the identity and entitlement management project. The system has
been evolving for a few years and collects entitlement data daily
from many systems in the company. Reviewers can browse data
for the workers they are responsible for and can conduct periodic
official reviews to attest that the workers have no more entitlements
than necessary. The system was in use by just one division of the
company and we designed extensions to support is use by the whole
company.

The purpose of creating architecture models for this project was
to express the requirements, communicate these requirements to
the development team, and to design a solution that was compatible
with the peer identity and entitlement management systems.

Management decided to use the implementation team for the
existing product to build the next version. Since the architects
and the implementation team were in different divisions of the
company, the priorities of the two were not aligned initially. The
architecture modeling for this project started out poorly because
the development team had no design models, would not share
implementation artifacts like the database schema or codebase, and
was too busy working on other projects to meet with architects

to document the existing system. We were able to build models
from the details we did know but our confidence in them was
low because we had no experts to validate them. The working
relationship improved over time but there was not time to make
improvements to the models of the existing system, which impaired
the way that the architecture techniques could help the project.

An additional hindrance was the need for the implementation
team to receive documents in a particular, non-architectural format.
Consequently, we produced architecture models and shoehorned
them into the document template. As such, most design discussions
did not make reference to the architecture models until latein the
engagement. The implementation team has warmed up to the mod-
els, however, and has agreed to make them the central mechanism
for discussing the design in the next set of enhancements scheduled
to follow the current set.

The project used the simple goals model; a detailed information
model that expressed many domain terms, synonyms, and some in-
variants; a minimal behavior model because of limited information;
and an acceptable blackbox component and connector model but a
known insufficient whitebox model.

3.3 Provisioning/De-provisioning: Product selection

The provisioning/de-provisioning project is a constituent project in
identity and entitlement management. The purpose of the system
is to provide a central place to administer workers entitlements.
Administrators can create or remove entitlements using a single
user interface and, through connections to managed systems, the
actual entitlements are changed on the affected systems.

The goal of creating architecture models for this system was
to ensure that the product selected would match the needs of the
business, to define a common model of entitlements to be shared by
all programs, and to produce a whitebox component and connector
model of the system to enable the creation of workflow scripts.

A significant challenge on this project was the collection ofin-
formation to create architecture models. The team within our com-
pany that was evaluating the vendor product was not co-located
with the architects and was under tight deadlines to demonstrate
feasibility, leaving little time to discuss what they had learned. The
vendor lacked the kinds of documents that would help the architects
build an architecture model. A significant obstacle, initially not de-
tected, was that the vendor and our company used the same termi-
nology with different definitions. A detailed information model of
the vendor product enabled us to identify and overcome this ob-
stacle. Eventually a purchase decision was made without having
complete confidence in the compatibility of this product with the
overall identity and entitlement management project.

This project used the simple goals model like other identity
and entitlement management projects. The blackbox model was
detailed and had ports appropriate to support what was knownof
the vendor product. The whitebox model was known to be deficient
since the vendor had no documentation and a limited amount of
time was allocated to discover the architecture.

3.4 Project D: Greenfield Design

Project D is concerned with the architecture of a system thatis to be
developed over several years. The project is aimed at bringing clar-
ity into this longterm effort early on. The system is best described
as a greenfield development effort to provide functionalitythat no
existing system in the company covers.

Even though the necessity for the system had been recognized,
the requirements for the system were only understood in the broad-
est terms. Project D developed the business and software architec-
ture for the system based on input from subject matter experts, pri-
marily through a precise goals model. This precise goals model
in turn required a comprehensive domain model. Finally, blackbox

and whitebox architectures of the system were derived from the
goals and domain models.

The goals and domain models were the core deliverables of pro-
ject D. They required substantial effort to produce and the subject
matter experts rated them as the greatest valueadd of the project.
The difficulties in developing goals and domain models for the sys-
tem arose mostly from the nature of the system as a visionary sys-
tem that even subject matter experts had only vague and conflicting
ideas about. While domains in the other projects were well under-
stood and the subject matter experts were able to focus on articu-
lating the system functions, in Project D the domain was novel and
forced us to create a domain model for the system as part of the
project.

We elicited the goals model from the subject matter experts
through example scenarios of what should be possible to do with
the system. Using these scenarios, the architect created a draft of a
goals model that that was then refined with the subject matterex-
perts. This process proved to be surprisingly efficient in discovering
goals and the domain of the system.

4. Observations
In reflecting on these four projects we have noticed similarities that
are described in this section as themes. In each project we were able
to use the models as a central discussion point between the subject
matter experts and the technologists. We found that our sameset of
techniques, if allowed to vary in the level of detail, could be used
on projects with quite different character. Our use of information
models, even at the most abstract levels of architecture, was impor-
tant in expressing the understanding of the domain. Unfortunately,
software architecture modeling is not a silver bullet but architects
should expect that learning the techniques will make them more ef-
fective. Finally, we still find it challenging to decide whento stop
modeling and move on to other development activities.

4.1 Bridge from business to technology

Across the four projects a strong theme was the use of models to
bridge the gap between the business and technology domains.The
best example from the identity and entitlement management pro-
gram was the use of architecture models to communicate the de-
sign of the system to management and other interested teams dur-
ing a meeting. The presentation included the goals model, infor-
mation model, component and connector models, and an excerpt of
the end-to-end scenario. It was effective enough that the audience
could immediately ask relevant detailed questions about areas that
concerned them.

Software architecture decisions are often of such high level that
it is impossible to strictly categorize them as either business or tech-
nology decisions. For example, in an early stage of entitlement re-
view we addressed a problem regarding data quality. The concern
was that the existing team receiving data feeds could not resolve
problems with the increased number of data feeds, as resolving
each problem required contacting the feed provider and negotiating
a resolution. We considered two solutions. The first was to keep the
data collection centralized but to delegate responsibility for data
quality issues to the feed provider. The second was to partlydecen-
tralize the data collection, thus limiting the number of feeds and the
number of groups that the central team would have to coordinate
with. Both alternatives address the same goal but are remarkable in
that one is a technology solution and the other is a business respon-
sibility solution. This demonstrates how architecture often sits on
the boundary between business decisions and technology decisions
and how the goals modeling can uncover such options.

A challenge in the provisioning/de-provisioning project was to
find a representation for entitlements that worked across the ven-
dor products. We were able to use architecture models, including

scenarios, to communicate with management how significant this
problem was and that it was not just a data translation issue.Based
on the shared understanding facilitated by the architecture model,
management allocated resources to solve the problem.

The use of architecture models to bridge gaps between busi-
ness and technology was most apparent in project D. In this project
there were no implemented solutions in existence and no technol-
ogist could start writing code until the problem was described and
understood. Many iterations were required between subjectmat-
ter experts and architects before both were satisfied with the so-
lution. The groups communicated their ideas and expressed their
concerns through the architecture models. In addition to being the
primary vehicle for conveying design proposals, the precise archi-
tecture models exposed fuzzy terms and fuzzy thinking. The hier-
archical nature of the models aided this iterative process.In par-
ticular, goals are decomposed into sub-goals and types are decom-
posed into subtypes, allowing the group to quickly zoom in from
high-level overviews to the relevant detailed models.

4.2 Collection of techniques plus detail knob

The architecture modeling technique provided a backbone offour
elements to express the core functions of the system but allowed
us flexibility in choosing the level of detail. In each project we set
the detail knob differently to respond to the needs of the project
since, for example, it is not a good investment of time to model
implementation details when you are planning on purchasinga
vendor product. We found that despite the differences between the
projects, the core set of techniques was largely sufficient to express
our intent.

All of the projects except for project D used the simple styleof
goals modeling that lacked the problem frames style of integrating
domain details. While project D was unprecedented and its goals
still quite unclear, the other projects could rely on a general shared
understanding of the domain as a substitute for detailed goal mod-
eling.

When concerns arose we were able to turn the detail knob up
on that particular area. For example, when it became apparent that
the existing entitlement review application and the provisioning/de-
provisioning application might have incompatible views ofentitle-
ments, it was possible to write more detailed scenarios and build
more detailed information models.

The entitlement review project required the creation of addi-
tional models beyond the core set. A spreadsheet was built toen-
code the application user roles and the set of entitlements each had.
Another spreadsheet was built that tracked the referentialintegrity
of two source data feeds over time as it was cleaned up and be-
came more complete. The level of detail used on each project is
summarized in Table 1.

4.3 Model of domain concepts

Our observation that a model of domain concepts is useful at the
architecture modeling level is not novel but neither is it universally
recognized. Subject matter experts may be in a hurry to describe a
systems functions and technologists may be in a hurry to describe
how those functions will be implemented, but we have found it
essential to build an information model that underpins bothand
ensures that concepts and relationships are well understood.

In the entitlement review project, subject matter experts from
many domains contributed to the project requirements. We discov-
ered that their terms might overlap but they did not always agree on
relationships or definitions. On this project synonyms werecom-
mon so we used convenience attributes and invariants to encode
them (refer to section 2.2.3).

A central challenge on the provisioning/de-provisioning project
was the structure of entitlements. Each system to be provisioned

Models
Project
(character)

Goals
Model

Component and Connector
Model

Information Model Behavior Model

Identity and Entitlement Management
(documentation)

Simple Detailed blackbox,
detailed whitebox

Sufficient for simple
goals model

Detailed single
end-to-end scenario

Entitlement Management
(brownfield)

Simple Acceptable blackbox,
insufficient whitebox

Detailed Minimal

Provisioning / Deprovisioning
(product selection)

Simple Detailed blackbox,
minimal whitebox

Sufficient for simple
goals model

Minimal

Project D
(greenfield)

Detailed Acceptable blackbox,
idealized whitebox

Detailed Simple scenario

Table 1. Level of detail by project

had its own model of entitlements and we needed to produce a
model that covered them all and was able to encode role-basedac-
cess control. After creating an information model that we hoped
would be sufficient, we discovered that often resources are provi-
sioned indirectly. For example, the provisioning system might actu-
ally create new entries in an LDAP server in order to entitle access
to another system. The precise encoding of our understanding as an
information model enabled us to express our understanding and to
detect when our design was incompatible with new requirements.

Unlike the other three projects, project D entered into a domain
still being explored by the subject matter experts (and the irony of
their title was not lost on the group). Rather than using the infor-
mation model to simply detect overlapping terminology or ensure
knowledge transfer between subject matter experts and architects,
project D used the information model as a key working model by
the subject matter experts themselves to encode alternative possi-
bilities and grow their understanding of this new domain. The preci-
sion of the model enabled them to detect inconsistencies with their
proposals and to communicate them to the architects and other sub-
ject matter experts.

4.4 Architecture techniques amplify skill

Some tasks have the property that, after a person has been trained
to do them, the work of one person cannot be differentiated from
another. For example, after teaching Ann and Bob to fill out time-
cards, we do not expect that one will do it better than the other.

Software architecture modeling can amplify the skills of an
architect but cannot guarantee success [5]. While we shouldexpect
that trained architects will have greater insight and have access to
more precise techniques, we should not be surprised when Anncan
use the techniques effectively and Bob struggles.

All models are abstractions of more complicated systems. Inthe
hands of an expert, models can be used to comprehend properties of
systems that would otherwise be too complex. The choice of which
properties to represent in a model is subjective so models can fail
to be useful either if they focus on unhelpful properties or if the
models cannot be analyzed by the architect. Two of our projects
demonstrated examples of these failings.

On the provisioning/de-provisioning project, over the course
of many meetings our architects were unable to validate thatour
overall model of entitlements was compatible with the vendor’s
model despite having access to published documentation, internal
documentation, and even the vendors implementation team. The
vendor’s implementation-level model made extensive use ofmeta-
modeling ideas like key-value pairs but did not express whatin-
stances would be present at runtime. When questioned, the vendor
could tell us what key-vlaue pairs would be present in various situ-
ations, indicating that while they understood their product they had
not encoded the necessary information in their models. The ven-
dor had produced an accurate model that abstracted away details

necessary to answer our question. It is our belief that if theven-
dor’s team had been knowledgeable regarding architecture model-
ing then their models would be more helpful for our task and less
like literal drawings of the data structures.

On the entitlement review project, one of the goals was to edu-
cate an apprentice architect. After training he was able to produce
syntactically correct architecture models, the same as themore ex-
perienced architects. Due to his lack of experience, however, his
models at the time tended to be straightforward expression of what
he had learned from subject matter experts and he was not yet able
to use the formalization to detect inconsistencies or expose gaps in
the design. As a consequence, the architecture models did not help
him to improve the quality of the system design.

Not all subject matter experts in project D embraced the archi-
tecture models. Those that rejected the technique outrightcontin-
ued to create documentation with imprecisions and contradictions
that would have been avoided with the goals and information mod-
eling techniques. Those that embraced the models avoided these
problems and were able to help the architects remove problems in
the design. This experience suggests that the models were a catalyst
in designing the system.

4.5 When to stop adding detail

With both an ability to turn up the detail knob on every model
type and an ability to borrow more modeling techniques from the
source techniques, it was often tempting to continue addingdetail
to our models. In formal or informal reviews, architects often asked
each other why they chose the level of detail they did, or even
expressed the opinion that more detail should have been added in
particular places. Adding more detail must always be tradedoff
with an additional time investment to add that detail. Whilewe
cannot offer a universal rule, we can describe some cases andour
decision process. In general, we traded off model creation effort
with the models ability to answer questions.

The choice of where to stop the model was easiest in the iden-
tity and entitlement management project because each of itsthree
constituent projects had an architecture model itself. This was not
license to add all possible detail because in the whitebox com-
ponent and connector view showing the three constituent projects
there were approximately sixty ports, either for communication to
the peer systems or to external systems. While we had the model-
ing capability to document the datatypes and operations foreach of
those ports, we declined to add this detail and forego the ability to
detect problems at that level.

The provisioning/de-provisioning project was targeted atprod-
uct purchase from the start. The important questions to be answered
by the model included whether or not the vendor product couldsup-
port our model of entitlements and if it could connect to the other
projects. We did end up creating a whitebox component and con-
nector model of the vendor product because it supported the cre-

ation of workflows and the workflow authors would need to know
that level of architecture.

The choice of where to stop was most challenging on the brown-
field entitlement review project. The enhancements for the next ver-
sion ranged from changes visible at a highest level of modeling to
small changes to input datatypes. One particular incident stood out:
The developers informed us that one of our requirements would
entail changes to 110 stored procedures. While this work wasin-
evitable for this release, we wanted to be sure to avoid similar prob-
lems for subsequent releases and the architects thought they knew
how to prevent future problems. Two problems emerged: First, the
developers would resent the architects encroaching on their detailed
design, and second, we did not want to invest the effort to make all
of our models sufficiently detailed to encode all such details. One
camp of architects subscribed to the crisp boundary theory where a
line was drawn and the architecture stopped there. The crispbound-
ary architects would not tell the developers how to avoid implemen-
tation problems but instead write quality attribute requirements, for
example, that future changes of a certain nature must be ableto
be made within a certain time. The other camp of architects advo-
cated a design wedge theory where more architecture detailswere
modeled at the top levels but tapered off as the model approached
the implementation components. In the end we produced a crisp
boundary architecture model and had an informal chat with the de-
velopers about implementation options.

Due to the novel nature of project D, the key question was
feasibility rather than balancing various quality attributes. Because
of this restriction, architecture modeling progressed until it became
apparent that any given component could be constructed or perhaps
already existed. Each component had a corresponding high level
goal motivating it and in most cases its subcomponents were not
specified to allow for latitude in implementation. It was possible to
stop modeling at the highest level of components because thekey
question of feasibility could be answered at that level.

5. Limitations
Ideally, this report would be produced by an independent party
that was neither invested in the application of the architecture
technique nor responsible for its development, as were the authors
of this report. To the best of our abilities we have tried to keep our
observations objective.

Furthermore, an ideal report would compare some quality at-
tributes of project delivery with and without the software architec-
ture modeling. Since such metrics were not available in thisorga-
nization before we started we were not able to make a meaningful
comparison.

While this report focuses on the first year of usage of the ar-
chitecture technique, we do not yet know how it will fare during
its longer-term application across the whole firm. Moreover, we do
not present evidence of reproducibility at other firms with different
existing customs. However, our observations can serve as anearly
sanity check of our approach and guide future development and
research.

Finally, the architects participating in these projects already
have a track record of successful project delivery and are, in gen-
eral, highly knowledgeable regarding software engineering theory
and practice. Since not all architects will have a similar back-
ground, we have little evidence that the architecture technique
could be learned and effectively applied by other architects. On
the other hand, we did provide some indications that inexperienced
architects benefit from using the technique.

It is possible that many readers of this report, as experts insoft-
ware architecture, will be disappointed at the apparent gapbetween
what has been shown in research contexts and what we have pre-
sented here from an industrial context. For example, we suggest the

creation of UML models instead of using a special-purpose archi-
tecture description language and we have never been able to prove
that our systems have any strong property, such as absence ofdead-
locks. In the experience of the authors, however, the techniques that
we have employed are a significant improvement compared to the
norm in industry projects. The concepts of components, connec-
tors, ports, goals, and refinements are rarely represented with any
precision in the all-too-common PowerPoint architectures. From
this perspective, the use of UML with its mature tool supportis a
pragmatic choice and the lack of formalism in other areas is justi-
fied because their benefits might not outweigh the time investment
required.

6. Conclusions
We have presented an architecture modeling technique that we be-
lieve has pulled the best ideas from various research publications.
We summarized anecdotal evidence on its usage in four projects of
different natures across five themes of observations. Theseobser-
vations address practical problems of software architecture that we
believe have to be faced by many software architects in practice.
These projects were performed at a large financial company that
bears similarity to many other information technology departments
that the authors have experienced. Thus we believe our observa-
tions can guide the application of software architecture bypracti-
tioners in similar situations.

Our observations are based on anecdotal evidence and suggest
future research questions. For example, we make the observation
that levels of detail of different models are possibly tied to the
nature of the project. Quantitative data from a variety of projects
could expose relationships between these variables.

Another unresolved issue regards how architecture modeling is
used within a company and by whom. It seems inappropriate to
expect every person in the company to learn the technology. If only
some learn it, how should they interact with those that do not? We
have tentatively identified three levels of knowledge regarding the
models: In Level 1 someone can read a model produced by another.
In Level 2 someone can create syntactically correct models.In
Level 3 someone can use the models to discover flaws in proposed
designs, to identify areas of the domain that have not yet been
modeled, and to evaluate various quality attributes. Future reports
or research could address which people should get which level of
training.

We have not addressed how to decide the balance between in-
vesting time in software architecture versus proceeding with what
has already been modeled. This is an important technology transi-
tion question as time and money are always scarce commodities
on commercial projects. In many ways the research community
has taken the high road and investigated highly formal models that
require considerable time investment with commensurate value in
special domains, e.g., high reliability systems. Many industry man-
agers responsible for non-exotic projects would ask “What benefit
can I get if I invest 1, 2, or 3 weeks in building an architecture
model?”

The response of the project teams to the architecture modelshas
been generally positive. There are some team members who are
reluctant to learn another technique. Others question the time in-
vestment compared to just starting coding. Still others support the
techniques in principle but when deadlines get tight they revert to
their old ways. But overall the people who have participatedhave
been happy with the results. They tell us that the models encode a
clear description of the problems and solutions, sometimesindicat-
ing that the clarity we can demonstrate in the problem definition is
the greatest value.

7. Acknowledgments
We thank Jonathan Aldrich, Bradley Schmerl, David Garlan, Bill
Scherlis, the SSSG, Lougie Anderson, and the anonymous review-
ers for helpful feedback on this material. The first two authors
wish to acknowledge support through the US Army Research Of-
fice (ARO) under grant number DAAD19-01-1-0485, the National
Science Foundation under grant CCR-0113810, and a researchcon-
tract from Lockheed Martin ATL. The views and conclusions con-
tained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or
implied, of the ARO, the U.S. government, Lockheed Martin, or
any other entity.

References
[1] Len Bass, Paul Clements, and Rick Kazman.Software Architecture

in Practice. Addison-Wesley, 1998.

[2] John Cheesman and John Daniels.UML Components: A Simple
Process for Specifying Component-Based Software. Addison-Wesley,
2000.

[3] Paul Clements, Felix Bachmann, Len Bass, David Garlan, James
Ivers, Reed Little, Robert Nord, and Judith Stafford.Documenting
Software Architectures: Views and Beyond. Addison-Wesley, 2002.

[4] Desmond F. D’Souza and Alan Cameron Wills.Objects,Components
and Frameworks With UML: The Catalysis Approach. Addison-
Wesley, 1998.

[5] George Fairbanks. Why can’t they create architecture models like
"Developer X"?: an experience report. InICSE ’03: Proceedings of
the 25th International Conference on Software Engineering, pages
548–552, 2003.

[6] David Garlan, Robert T. Monroe, and David Wile. Acme: Architec-
tural description of component-based systems. In Gary T. Leavens
and Murali Sitaraman, editors,Foundations of Component-Based
Systems, chapter 3, pages 47–67. Cambridge University Press, 2000.

[7] Christine Hofmeister, Robert Nord, and Dilip Soni.Applied Software
Architecture. Addison-Wesley, 2000.

[8] Michael Jackson. Problem Frames: Analyzing and Structuring
Software Development Problems. Addison-Wesley, 2000.

[9] Rick Kazman, Mark Klein, and Paul Clements. ATAM: Methodfor
architecture evaluation. Technical Report CMU/SEI-2000-TR-004,
Carnegie Mellon University / Software Engineering Institute, 2000.

[10] Jeff Kramer and Jeff Magee. Engineering distributed software: a
structural discipline. InESEC/FSE-13: Proceedings of the 10th
European Software Engineering Conference and 13th ACM SIGSOFT
International Symposium on Foundations of Software Engineering,
pages 283–285, 2005.

[11] Emmanuel Letier and Axel van Lamsweerde. Reasoning about
partial goal satisfaction for requirements and design engineering.
In SIGSOFT ’04/FSE-12: Proceedings of the 12th ACM SIGSOFT
International Symposium on Foundations of Software Engineering,
pages 53–62, 2004.

[12] Martin Ould. Business Processes - Modeling and Analysis for Re-
engineering and Improvement. John Wiley and Sons, 1995.

[13] Samuel Redwine, Jr. and William Riddle. Software technology
maturation. InICSE ’85: Proceedings of the 8th International
Conference on Software Engineering, pages 189–200, Los Alamitos,
CA, USA, 1985.

[14] Jim Rumbaugh, Ivar Jacobson, and Grady Booch.The Unified
Modeling Language Reference Manual. Addison-Wesley, 1998.

[15] Mary Shaw and David Garlan.Software Architecture: Perspectives
on an Emerging Discipline. Prentice-Hall, 1996.

[16] Ian Sommerville. Software Engineering. Addison-Wesley, 7th
edition, 2004.

