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ABSTRACT

Many future applications will require guarantees on network performance, such as bounds

on throughput, delay, delay jitter, and reliability. To address this need, we have designed, simu-

lated, and implemented a suite of network protocols to supportreal-time channels (network con-

nections with mathematically provable performance guarantees). The protocols, which constitute

the prototype Tenet Real-Time Protocol Suite (Suite 1), run on a packet-switching internetwork,

and can coexist with the popular Internet protocol suite. We rely on the use of connection-oriented

communication, per-channel admission control, channel rate control, and priority scheduling.

This protocol suite is the first set of transport and network-layer communication protocols

that can transfer real-time streams with guaranteed quality in packet-switching internetworks. We
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have performed a number of experiments and demonstrations on multiple platforms using contin-

uous-media loads (particularly video). Our results show that our approach is both feasible and

practical to build, and that it can successfully provide performance guarantees to real-time appli-

cations. This paper describes the design and implementation of the suite, the experiments we per-

formed, and some of the lessons we learned.

1  Intr oduction

This paper describes the Tenet Real-Time Protocol Suite, the first set of network and trans-

port layer protocols capable of transferring real-time streams in heterogeneous packet-switching

internetworks with guaranteed quality. The design, implementation, and experiments described

herein served two purposes: 1) to investigate whether such guarantees can be provided in a

packet-switching internetwork, and 2) to add to the knowledge of the field through a systematic

study of the complexity and performance of such a scheme.

The remainder of this section provides some background for our work. In Section 2, we

briefly state some of the principles behind the Tenet Suite; more details, as well as justifications,

can be found in [1][2][3][4]. We then describe the architecture, which arises from a consideration

of these principles. Section 3 and Section 4 present the design and the implementation of the indi-

vidual protocols. In Section 5, we describe our experiments and measurements of the protocols.

Section 6 provides a list of the lessons that we learned during this endeavor. In Section 7, we sum-

marize and describe future work.

1.1  A Brief History of the Tenet Suite

The Tenet Real-Time Protocol Suite was born in 1987, when one of the authors (Ferrari)

was investigating the operating system support necessary for multimedia applications, and was

repeatedly led to making the assumption that future networks would offer performance guaran-

tees. While this assumption is true for circuit-switching networks, he felt that future integrated-

services networks would have to be based, for economical reasons, on packet switching.
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Ferrari set out to build a scheme (a set of algorithms) that would offer a packet-switched

network’s real-time clients the desired guarantees by providingreal-time channels5. The basic

ideas underlying the scheme were the real-time channel abstraction itself, admission control, con-

nection-oriented communication, channel rate control, and deadline-based scheduling for real-

time packets [1]. He was later joined by the other authors in designing a protocol suite embodying

the Tenet scheme.

Several simplifications were made to facilitate the development of the first suite. Most

notably, we decided to provide only unicast real-time channels, and to introduce multicast capa-

bilities in a later version of the suite after studying the service requirements of multi-party appli-

cations [5]. We also postponed the study of routing algorithms for real-time channels.

By Summer 1991, the suite had been specified in all its details and extensively simulated.

We subsequently implemented, and tested the protocols on a local-area FDDI network. We then

installed the Tenet protocols on the experimental wide-area network of Project Sequoia 2000 [6],

and performed various experiments and demonstrations with continuous-media loads. A second

generation protocol suite (Suite2) has been designed to support multi-party real-time communica-

tion (including multicast) and is currently being implemented [7].

1.2  Related Work

The literature on real-time communication contains many proposals for satisfying the

requirements of continuous-media and other real-time applications. Most schemes, however, have

not yet been used in designing real-time protocols. At best, paper designs of such protocols have

been provided. So far, there have been very few implementations in this increasingly important

area of networking research.

ST-II [8] is a connection-oriented internetwork protocol that has been implemented in sev-

eral versions (e.g., [9], [10]). Although the protocol specification includes aFlowSpec that indi-

5.  In this paper, we define areal-time channel to be a simplex connection that provides mathematically provable
deterministic or probabilistic performance guarantees on data delivery.
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cates resource requirements, the algorithms for real-time admission control have not been

specified. To the best of our knowledge, the implementation by Delgrossiet al. [10] is the only

one providing mathematically provable guarantees. It uses admission control algorithms based on

the Tenet scheme over Token Ring and FDDI networks [11]. ST-II follows many of the same prin-

ciples as the Tenet Suite; it is a very rich protocol and can support multicast streams. However,

neither the protocol specification nor the implementation of [10] provide a mechanism for per-

forming and encapsulating reservations on multi-hop subnetworks (e.g., ATM networks).

More recently, RSVP has been designed as a protocol for exchanging reservation mes-

sages [12]. A subject of current work within the Internet Engineering Task Force, RSVP serves a

role similar to, and shares many features with, our channel setup protocol. The major difference is

that RSVP reservations are considered to be “soft state”, which must be periodically refreshed.

This approach allows RSVP flows to adapt more easily to network load and outages, but intro-

duces some refresh overhead and allows quality of service disruptions due to routing changes or

lost refresh messages. In contrast, the Tenet suite uses “hard” state to provide consistent perfor-

mance during normal operation and explicit recovery in case of network faults [13]. As the imple-

mentation of RSVP and associated admission control algorithms was in progress during this

study, we could not compare its performance and utility to those of the Tenet Suite.

Some real-time protocols have been implemented for specific networks (e.g., [14], [15]).

To the best of our knowledge, these implementations are not applicable to heterogeneous internet-

works. Standard signalling protocols for ATM networks can support mathematically provable per-

formance guarantees [16]. However, the corresponding admission control algorithms have not yet

been fully specified.

2 The Architecture of the Tenet Suite

The Tenet scheme for real-time communication is based on some principles that dictated,

or suggested, some of the architectural characteristics of our protocol suite [2]. In this section, we
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briefly recall some of these principles. More details, as well as basic motivations, have been pre-

sented and discussed elsewhere [1] [2] [3] [4].

First, all layers in a network’s architecture, in particular, the datalink layer, must be able to

provide guaranteed-performance services. Datalink layers such as synchronous FDDI, ATM with

a suitable signaling protocol and admission tests, and 100VG-AnyLAN meet this requirement. By

contrast, no real-time service offering mathematically provable delay guarantees can be built on

top of the IEEE 802.3 (Ethernet) datalink layer. Performance bounds can be offered to applica-

tions by implementing real-time protocols at the network and transport layers, on top of a real-

time datalink protocol. The Tenet Suite includes a network (or internetwork) layer protocol, the

Real-Time Internetwork Protocol (RTIP), and two transport layer protocols, theReal-Time Mes-

sage Transport Protocol (RMTP) and theContinuous Media Transport Protocol (CMTP).

In the Tenet scheme, real-time channels are set up in an establishment phase that precedes

data transfer. In this phase, admission control tests are run at each node along the channel’s path,

all of which must succeed for data transfer to begin. This separation between setup and transfer

suggests that establishment (and teardown) be done by a control protocol distinct from the data

delivery stack. This solution is not universally preferred (as in the cases of ST-II [8] and SRP

[17]), but it had the advantage of allowing us to develop, test, and maintain the control and data

delivery protocols separately. Control functions in the Tenet Suite are provided by theReal-Time

Channel Administration Protocol (RCAP) [18] [19].

An important principle of the Tenet approach is that all real-time applications have

requirements expressible by general performance or reliability parameters. Therefore, there is no

need for media-specific protocols at the network or transport layers, as one general-purpose proto-

col at each layer will suffice. The Tenet Suite’s two transport protocols (RMTP and CMTP) differ

from each other in their interfaces and services; CMTP is oriented towards periodic traffic, and is

time-driven instead of being based on the send-receive model used by RMTP.

The Tenet Suite is expected to offer a real-time service in an integrated-services network.
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Hence, we designed our protocols to coexist with the Internet protocols. Clients can send their

non-real-time traffic using TCP/IP or UDP/IP and their real-time traffic using the Tenet protocols.

Finally, a control facility is required to detect and recover from failures. Since this kind of

control is not directly related to the connection management performed by RCAP, another proto-

col, theReal-Time Control Message Protocol (RTCMP), was introduced in the design of the suite,

though it was not implemented due to our scarcity of programmer-power. This protocol computes

new routes and resource allocations in the event of network failures [13].

The suite that resulted from these considerations is shown in Figure 1, which represents

our proposed architecture for an integrated services internetwork. At the time of this writing,

CMTP has been almost entirely implemented, but has not been tested and integrated with the

other protocols. Its design is described in [20].

3 Design of the Tenet Protocols

This section discusses the design of our signalling protocol (RCAP), our network layer

protocol (RTIP), and one of our transport protocols (RMTP).

3.1  RCAP

Signalling and control services are provided in the Tenet Suite by the Real-Time Channel

Administration Protocol (RCAP). The main functions of RCAP are the setup and teardown of

real-time channels; it also supports status inquiries about established channels.

FIGURE 1. The Tenet Real-Time Protocol Suite. Also shown are the corresponding Internet protocols.

(FDDI, ATM, etc.)
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RCAP defines a set of messages to be passed between control entities along the path taken

by a channel. Each message has an implicit direction of travel with respect to a given real-time

channel, either “upstream” (towards the sender) or “downstream” (towards the receiver). RCAP

assumes a reliable message delivery system; it does not provide explicitly for error recovery. The

RCAP messages are shown in Table 1.

Channel establishment is performed in a single round trip in order to keep the setup time

small. More complex client negotiations and/or resource balancing may be added using a method

similar to DCM [21]. In the forward pass, anestablish_request message is sent, hop by

hop, from the source to the destination of the channel. At each node along the path where RTIP

runs, a local RCAP entity performs admission control tests [1] [3]. If the channel can be sup-

ported, the necessary resources are tentatively allocated and theestablish_request mes-

sage is forwarded to the next node.

Once this message reaches the destination, anestablish_accept message is sent hop

by hop back from the destination to the source, backtracking along the path. Each local RCAP

entity may relax the allocation of any resources that were over-reserved on the forward pass. It

then informs the local RTIP entity of the new channel and passes theestablish_accept

message upstream. When this message reaches the source application, data transfer may begin.

Message Name Dir ection Description

establish_request Downstream Request to establish a new channel.

establish_accept Upstream Indicates acceptance of a new channel.

establish_denied Upstream Indicates that a channel establishment
request was rejected.

status_request Downstream Requests channel status at each node.

status_report Upstream Returns data collected by a
status_request.

close_request_forward Downstream Message from source to close a chan-
nel.

close_request_reverse Upstream Message from destination to close a
channel.

TABLE 1.  RCAP messages.
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If any node determines that it cannot support the channel’s performance requirements, it

sends anestablish_denied message hop by hop back to the source; this message causes the

channel’s tentatively reserved resources to be released.

During establishment, the client must specify its performance requirements (theQuality of

Service, or QoS, it needs) and a worst-case description of the traffic it will transmit over the new

channel [1] [3]. The QoS parameters of the RCAP interface are listed in Table 2, the traffic param-

eters in Table 3. Note that two of the four QoS parameters in Table 2 are probabilities to support

statistical bounds on delay and loss. These services allow bandwidth and buffer space to be “over-

booked”, appreciably increasing the utilization of these resources [3].

Establishment of a channel is analogous to the signing of a contract: the network guaran-

tees the performance bounds requested by the application, provided that the application obeys its

traffic description at all times and that there are no failures in the network during the channel’s

lifetime [22] [23]. This contract is valid until the channel is torn down.

Finally, either the source or the destination of a given channel can request that it be closed,

using theclose_request_forward andclose_request_reverse messages. They are

transmitted hop by hop along the channel route and cause the channel’s resources to be released.

Symbol Description

Upper bound on end-to-end message delay

Lower bound on probability of timely delivery

Upper bound on delay jitter (optional)

Lower bound on probability of no loss due to buffer overflow
TABLE 2. QoS parameters.

Symbol Description

Minimum inter-message time

Minimum average inter-message time

Averaging interval

Maximum message size
TABLE 3. Traffic parameters.

Dmax

Zmin

Jmax

Wmin

Xmin

Xave

I

Smax



9

RCAP is designed to control real-time channels in a heterogeneous internetwork. In such

an environment, different networks may have different scheduling policies or different resource

models, which will require different admission control tests. Interoperability is obtained by deriv-

ing network-specific parameters and bounds from the end-to-end client-specified parameters

(such as those in Table 2 and Table 3). RCAP abstracts these network-specific bounds into net-

work-independent bounds that can be used by the end-to-end establishment process. Such an

approach allows RCAP to utilize the specific characteristics of an individual network in order to

provide guarantees, yet hide the underlying details of that network whenever possible [4] [18].

3.2  RTIP

The Real-Time Internet Protocol (RTIP) is the network layer of the Tenet Suite. Its main

function is to deliver packets to meet the channels’ real-time requirements. In contrast to the IP

datagram service, RTIP is connection-oriented. Data forwarding in RTIP is unreliable since pack-

ets may be corrupted or lost due to buffer overflow (if ). RTIP performs rate control, jit-

ter control, and scheduling based on the QoS parameters of each connection. Since all packets on

an RTIP connection follow the same path, and we assume that subnets do not reorder packets,

packets arrive at the destination in the same order they were sent by the source. Therefore, RTIP

provides an unreliable, simplex, guaranteed-performance, in-order packet delivery service.

The RTIP header, shown in Figure 2, is fixed-size to simplify processing at each node. In

order to coexist with IP6, the first four bits of the RTIP header identify a packet as an RTIP packet.

The other fields in the packet consist of a local channel ID, a packet length field, and a packet

sequence number used in message reassembly (see Section 3.3). In addition, each packet carries a

timestamp, which indicates the time the packet was received by the RTIP module at the sending

host, and is used by our distributed jitter-control mechanism [22]. RTIP includes a checksum for

6.  Since RTIP was designed for experimentation under as few constraints as possible, we did not try to maintain IP
compatibility, but merely ensured that the two protocols could co-exist. RTIP packets may be encapsulated in IP
packets to simplify wide-scale deployment over networks where routers do not implement RTIP; however, no real-
time guarantees can be made in such a scenario.

Wmin 1<
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its header, but does not provide a checksum for user data.

Each RTIP entity contains a regulator and a scheduler. The regulator monitors the traffic

on each connection and shapes it according to the traffic specification of that connection. The reg-

ulator also ensures that a connection’s delay jitter requirements are satisfied [22]. The scheduler

ensures that no packet (or a bounded fraction of the packets) remain in the node longer than their

local delay bounds.

3.3  RMTP

RMTP provides a message-based abstraction on top of RTIP. An instance of RMTP is

needed at both endpoints of a real-time channel. RMTP resides at the same layer in the protocol

stack as TCP, but is lighter-weight. For example, the service provided by RMTP is unreliable.

Acknowledgments and retransmissions, the usual cure for loss and corruption, were deemed use-

less for real-time applications with stringent delay bounds and for most continuous-media appli-

cations. RMTP relies on RCAP to manage connections so that there is no congestion, and on

RTIP to provide rate-based flow control. Finally, RMTP does not perform packet reordering, since

RTIP provides in-order packet service.

The main service provided by RMTP is fragmentation and reassembly. Thus, the sending

RMTP module can accept messages larger than the maximum RTIP packet size and break them

into several RTIP packets. The receiving RMTP module uses sequencing information carried in

the packet headers to reassemble the received message. The RMTP header is shown in Figure 3.

0 3 7 15 23 31

RTIP Version unused Local ID

Packet Length Packet Sequence Number

Timestamp

reserved Header Checksum

FIGURE 2. RTIP packet header.
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4 Implementation of the Tenet Protocols

This section describes the first implementation of each of the currently-operational proto-

cols in the Tenet Suite (RCAP, RTIP, and RMTP).

4.1  RCAP

The current RCAP implementation is divided into two parts: a library linked into each cli-

ent application and a daemon process that runs on each node, independent of the applications

[19]. These components, and the relationships between them, are shown in Figure 4. This imple-

mentation is extremely portable, compiling without modification on nearly all UNIX-like opera-

tion systems.

The RCAP library implements the network control API. It exports a set of procedures that

can be called within a user program to request various channel management functions. These pro-

0 7 15 23 31

Timestamp

Message length Message Seq. # Flags

Checksum

FIGURE 3. RMTP message header.

FIGURE 4. The RCAP library and daemon, within a single network node. Arrows represent RCAP control
connections.
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cedures are listed in Table 4. In all current implementations, the RCAP library is a standard UNIX

library that is linked to the application program.

Information about the state of resources in the network is kept by an RCAP daemon pro-

cess on each node. This process manages the resources (such as link bandwidth) associated with

the node, and responds to requests for channel establishment and teardown. It maintains the local

state of each RTIP channel throughout the channel’s lifetime.

Each daemon communicates with neighboring daemons and with local processes using

control messages sent over TCP/IP connections. These connections play a role similar to that of

dedicated signalling channels found in ATM networks.

4.2  RMTP/RTIP

RMTP and RTIP have been implemented on various software and hardware platforms.

One of the authors (Zhang) wrote the original implementations of RMTP and RTIP for HP/UX on

HP 9000/700s and for Ultrix on DECstation 5000s. Tom Fisher and Hoofar Razavi ported these

implementations to SunOS on SPARCstations. Keith Sklower built versions for IRIX on SGI

workstations and BSDI BSD/OS on 80486-based PCs. All the software platforms are UNIX-like

Library Function Description

RcapEstablishRequest() Request to establish a new channel.

RcapRegister() Receiver uses this call to indicate its willingness to accept
new connections.

RcapReceiveRequest() Called by a receiving application to obtain an incoming
channel establishment request.

RcapEstablishReturn() Used by the receiver to indicate the final acceptance or
rejection of a channel.

RcapUnregister() Used by the receiver to stop receiving new connections;
does not affect existing real-time channels.

RcapStatusRequest() Called by the source application to obtain the status of the
channel at each of the intermediate nodes.

RcapCloseRequest() Used by either sender or receiver to close a given real-
time channel and release its resources.

TABLE 4. RCAP library exported pr ocedures.
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operating systems [24] with networking software derived from BSD UNIX [25] [26].

The software structure of the RMTP and RTIP implementations is shown in Figure 5.

While RCAP is implemented in user space, RMTP and RTIP are implemented in the kernel. A

new type of socket, with protocol typeIPPROTO_RMTP, is used by applications for sending and

receiving data. RCAP controls the local establishment and teardown of channels through socket

options applied to a special RTIP control socket.

Protocols previously implemented in BSD UNIX provide only best-effort service. In most

implementations, there is a buffer pool shared among all the connections, and the queueing disci-

pline used is First-Come-First-Served. To provide performance guarantees, we implemented per-

channel buffer management, as well as priority queueing mechanisms and rate control.

We implemented per-channel buffer management using a special-purpose mbuf originally

used by the Network File System (NFS). When an mbuf used by a channel is released, it is

returned to the set of buffers reserved for that channel instead of to the system-wide buffer pool.

A number of rate-based service disciplines [27] have been implemented in our suite:

Delay-Earliest-Due-Date [1], Jitter-Earliest-Due-Date [22] and Rate-Controlled Static Priority

[28]. For the latter two, we implemented both rate-jitter and delay-jitter controlling regulators

Device Drivers

RTIP IP

UDP TCPRMTP

Socket Layer

RCAP

Application

User Space

Kernel Space

IPC Layer

Transport Layer

Network Layer

Network-Interface Layer

FIGURE 5. Software structure of RMTP/RTIP. The Internet protocols co-exist with the Tenet Suite.
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[27]. The implementation is modular, so that other regulators and schedulers can easily be used.

The operation of a rate-controlled service discipline involves three tasks: calculating the

eligibility time of each packet, holding the packet if necessary, and enqueueing and dequeueing

packets at the scheduler. The eligibility time of each packet can be calculated using the formulae

defined in [27] [29]. Packets can be held in a host by putting the transmitting process to sleep, and

in a gateway router by using the UNIXtimeout procedure. Finally, the implementation of the

enqueue and dequeue operations depends on the scheduling policy. All the measurement experi-

ments described in the next section were performed using the EDD scheduler, which serves pack-

ets in order of their transmission deadlines.

5 Experiments with the Tenet Suite

Experimental measurements of our protocols is crucial. The worst-case analysis used to

derive the guarantees provided by the Tenet protocols is based on idealized models of the network

components. However, the actual timing behavior of a workstation is complicated by consider-

ations of process scheduling, timer granularity, interrupt handling, and CPU load. In addition, the

calculations carried out by the admission control schemes depend on an accurate knowledge of

the packet service times and transmission times, which must be measured from implementations.

5.1  Preliminary Measurement of RMTP/RTIP Performance

For our initial experiments, we set up the network shown in Figure 6. Three workstations

were connected by an FDDI ring, and routing tables were set up to form the logical topology

shown in Figure 7. Whiletheorem andfaith had one FDDI interface each,lemma had two

FDDI interfaces to allow it to act as a router in the logical topology. In some experiments, best-

effort load was created by sending packets to a non-existent machine calledfake.

Because the goal of this experiment was to measure achievable performance, we did not

use RCAP’s admission control or channel setup; we set the traffic descriptions and local delay

bounds individually. We also made no attempt to use realistic load patterns; the load was gener-
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ated by sending fixed-size packets in a tight loop. More details can be found in [30].

5.1.1  Maximum Speed of RMTP/RTIP

Figure 8 compares the maximum achievable throughput of RMTP/RTIP with those of raw

IP and UDP/IP. The experiment was performed with one process ontheorem sending 10,000

packets of the same size in a tight loop to another process onfaith, throughlemma. The packet

size was varied to obtain the curves shown. The RMTP/RTIP parameters were set to allow traffic

at higher than the achievable output rate, in order to measure the maximum rate at which packets

could be processed. From the throughput curve in Figure 8, we can see that the performance of

RMTP/RTIP is comparable to that of raw IP. This can be explained by considering the dominance

of the data copying cost on protocol performance. Due to the overhead of UDP checksums, the

throughput of UDP/IP is lower than that of raw IP or RMTP/RTIP.

A detailed breakdown of the RMTP/RTIP overheads on a DECstation 5000/125 is shown

theorem faithlemma

FDDI

FIGURE 6. Physical topology of the local testbed.theorem andlemma are DECstation 5000/125s and
faith is a DECstation 5000/240. Note thatlemma has two FDDI interfaces. All machines run the Ultrix

4.2A operating system.

fake

theorem lemma

faith

FIGURE 7. Logical topology of the local testbed. For some experiments, additional network load was
created onlemma’s outgoing interface by sending additional network traffic to a non-existent machine

(fake), shown in the shaded box.
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in Figure 9. The protocol processing cost is about 68µs, and nearly independent of the packet

size. The driver software processing time is also fixed at 114 µs per packet. The socket layer pro-

cessing and transmission contributions dominate and scale with the packet size, since they

involve data copying.

5.1.2  Rate Control Behavior

The next set of measurements shows the effect of rate control on RMTP/RTIP behavior.

FIGURE 8. Throughput of RMTP/RTIP, UDP/IP, and raw IP.
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These graphs were obtained by sending data from a process ontheorem in a tight loop to a

receiving process onfaith, which timestamped arriving packets. Figure 10 shows the arriving

sequence numbers against time for channels with different ( , ) combinations.  was 1

second for every channel. As can be seen in the figure, the rate control mechanism forces adher-

ence to the traffic specification, even though the source is attempting to send in a tight loop.

5.2  Measurement of the Sequoia 2000 Implementation

The Sequoia 2000 wide-area network offered us an opportunity to measure performance

with realistic video-audio traffic and data loads. The measurements presented in this section were

performed on the network topology shown in Figure 11. Video streams were sent using the video

conferencing toolvic, developed by Steve McCanne, between machines at UC Berkeley and UC

San Diego. Background traffic was added by transferring data fromgrayling toblizzard.

This traffic was used to congest the T1 link between UC Berkeley and UC Santa Barbara.

vic is able to use either UDP/IP or RMTP/RTIP for data transmission. We compared the

performances of a video session using each of the protocols in experiments summarized in this

section. Our Sequoia experiments are described in greater detail in [31].

Xmin Xave I

FIGURE 10. Effect of rate control at source on an RMTP/RTIP channel. The source process is attempting
to send packets in a tight loop, but its rate is limited by the rate control mechanism.
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5.2.1  Single RMTP/RTIP and Single UDP/IP Streams

We used RCAP to establish an RMTP/RTIP channel for avic session. The channel

parameters given to RCAP set peak and average rates of eleven RMTP messages per second.

Since the peak and average rates were equal, the averaging interval was not relevant. Each mes-

sage corresponded to a single motion JPEG frame, with a maximum size of 7200 bytes7. We

examined the queuing behavior at the bottleneck router (sock). Figure 12 shows the probability

density function of queue lengths. The queue length is curbed by the rate control and resource res-

ervation mechanisms. Even under a non-real-time load sufficient to saturate the outgoing link, the

number of outstanding real-time packets to be served remains at or below five8. In Figure 13,

7.  These RMTP parameters translated to RTIP layer parameters of 88 packets per second (average and peak rate),
with a maximum packet size of 1000 bytes.
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FIGURE 11. The Sequoia 2000 network. Shaded boxes represent routers; all other boxes represent hosts.
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which shows the delays encountered atsock, we can see that the queueing delay at the bottle-

neck node is always below the guaranteed bound, which in this case was 70 ms. The delays in

Figure 13 concentrate around several discrete values at distances that correspond to a packet’s

transmission time.

8.  The queue length reaches as high as five because the effect of timer granularity on the RTIP rate control imple-
mentation.

FIGURE 12. Probability density function of queue lengths, for a single RMTP/RTIP channel under non-
real-time traffic congestion. The mean queue length is 0.964.
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Figure 14 plots the received throughput (in kilobits per second, averaged over 1-second

intervals) over time. The UDP/IP throughput is fairly smooth up to twenty seconds into the plot,

when load is introduced into the network. At this time, performance suffers due to queue build-

ups, which cause delays and dropped packets. Even after the load is removed at thirty seconds, the

transient emptying of the network buffers causes variations for a few more seconds. Because of its

higher priority, however, the RMTP/RTIP stream is protected from the background traffic.

5.2.2  Two RMTP/RTIP Streams

This experiment demonstrated the protection of multiple RMTP/RTIP channels from each

other. We set up twovic sessions from UC Berkeley to UC San Diego and introduced from addi-

tional load fromgrayling as before. The throughputs, shown in Figure 15, remain almost con-

stant even when a substantial amount of load is introduced into the network.

5.2.3  Impact on Video Quality

Although the experiments in the previous sections clearly demonstrate that our protocols

provide their promised service, it is also important that a human user appreciate the difference

between the quality of video transported by UDP/IP versus RMTP/RTIP. In this experiment, two

FIGURE 14. Throughputs of RMTP/RTIP and UDP/IP streams under non-real-time traffic load.
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vic video sessions were run simultaneously from UC San Diego to UC Berkeley: one using

UDP/IP fromvenezia topropaganda, the other using RMTP/RTIP frompaola tofaith.

Both sessions had an average rate of 580 Kbps (roughly ten frames per second), a rate chosen to

allow both sessions to get equal performance on an unloaded network.

Fifty attendees of the University of California’s 1994 Industrial Liaison Program Confer-

ence viewed the two video streams under various levels of load in the network. The load was

introduced by using UDP packets fromblizzard tograyling to congest the link between

UC Santa Barbara and UC Berkeley. The viewers were asked to evaluate the quality of the videos

without prior knowledge of which protocol suites were in use. With a 99% confidence interval,

the mean opinion score of the RMTP/RTIP video session did not change during the experiment.

However, with the same confidence interval, the mean opinion score of the UDP/IP session

dropped by 54% when the same load was introduced into the network.

5.2.4  Connection Setup Latency

The final experiment was conducted to investigate the time taken to establish connections.

One concern expressed about connection-oriented services and admission control is that the setup

phase might introduce significant delays, especially due to the need to perform admission tests in

FIGURE 15. Throughputs of co-existing RMTP/RTIP channels under non-real-time traffic load.
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each node. To address this issue, we measured the various delays incurred during establishment.

The path used in the previous experiments, betweenfaith at UC Berkeley andpaola

at UC San Diego, involves six machines, three FDDI rings, and two T1 links. The time to perform

the end-to-end round trip establishment is about 90 ms. This latency is roughly constant for up to

thirty established RTIP connections. The main factor which determines the latency is the path

length. For example, for a shorter path fromgrayling toredwood at the San Diego Super-

computer Center, the end-to-end setup latency is about 70 ms.

The breakdown of latencies into per-machine and per-link costs for a typical run (from

grayling toredwood) is shown in Table 5. This path involves four machines, one FDDI ring,

and two T1 links. The node latencies are shown separately for the forward and reverse directions,

while the link latencies are averages of the forward and reverse latencies.

grayling (a DECstation 5000/125) was slower than the others (DECstation 5000/240s),

which explains the higher node latency. We found that the times to perform the admission control

tests themselves were always less than 0.5 ms per node. Thus, our setup latency is dominated by

propagation delays, protocol processing, and control message transport overheads (note that the

control messages are transported over TCP/IP).

6 Lessons

We learned many lessons from designing, implementing, and experimenting with the

Tenet Real-Time Protocol Suite. None of these could have been discerned with the same level of

certainty, or at all, if we had just published a few papers on our admission control algorithms and

Node Forward (ms) Reverse (ms) Link (ms)

grayling 3.906 3.907 3.674

sock 2.056 1.832 11.9

breeze 1.637 1.825 9.779

redwood 1.853 1.958 —
TABLE 5. Node and link latencies in channel establishment
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moved on to something else. In this section, we highlight what we feel are the most important les-

sons we have learned and, based on our experience, some of the most important questions still to

be answered. Of course, our work has not been performed in isolation, and we have benefitted and

learned from continual interactions with others investigating the same or similar problems.

Proof of concept: The most important result we obtained was a demonstration that guaran-

teed-performance data delivery can be provided in a packet-switching environment using the

Tenet approach. Significantly, our experiments indicate that it is possible to build signalling proto-

cols that establish real-time channels rapidly enough to satisfy most clients, and to build real-time

data delivery protocols that attain the speeds achievable by UDP/IP.

Admission tests must be improved: Even though we did not run experiments intended to

investigate this aspect, one can show that the deterministic admission control tests we used in the

Tenet Suite were too pessimistic. Overly-pessimistic algorithms are undesirable because they

reduce the real-time capacity of the network9. We now have more optimistic tests for both deter-

ministic [32] and statistical [33] guarantees, and plan to experiment with them in Tenet Suite2.

Multi-party support is needed: As we expected, the absence of multi-party support has

been a hindrance to even small multimedia conferences using Suite1. This problem has two

aspects: without multi-party support, connection setup for an N-way conference is cumbersome,

and the amounts of resources reserved are high. This problem is being solved in Suite2 by pro-

viding multicast channels, resource sharing between related channels in the same conference [34],

and higher-level abstractions to simplify connection setup for multi-party communication [7].

A variety of establishment paradigms is useful: Experience with applications and conver-

sations with other researchers have convinced us that some applications are best served bysource-

initiated connection establishment (e.g., pre-planned conferences in which participants are known

in advance), some byreceiver-initiated establishment (e.g., seminar distribution)10, and some by

9.  Near-full utilization of the network can still be obtained by the addition of non-real-time traffic.

10.  Byreceiver-initiated establishment, we mean only that the direction of establishment is from the receiver to the
source: the traffic requirements are still specified by the source.
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duplex establishment (e.g., videophone). Although RCAP was designed for source-initiated estab-

lishment, our establishment procedure can be extended to these other cases as well.

Separation of control and delivery protocols facilitates development:The separation of

our signalling and data-delivery protocols, and the decision to implement RCAP completely in

user space, facilitated the debugging and porting of the implementations.

Remaining questions: A number of questions still need to be answered, and we plan to use

this suite and its successor (Suite2) to shed some light on them. Some are small and detailed (e.g.,

are the representations of RCAP parameters suitable?). Others are more far-reaching (e.g., what is

an appropriate traffic representation?). Other issues are fundamental to real-time networking

research (e.g., are deterministic and statistical guarantees necessary and usable, and how do they

translate to charges for network usage?) Unfortunately, answers to the more fundamental ques-

tions require real users and applications, and will have to wait for real-time protocols (ours and

others) to be deployed in production environments.

7 Conclusions and Future Work

While we made some simplifications in both the design and implementation of the Tenet

Suite, we feel that the project proved the feasibility and the practicality of the Tenet approach to

real-time communication. The result is the first suite of network and transport-layer protocols

capable of transferring data on packet-switching internetworks with guaranteed performance.

Much work has already been done to extend the Tenet approach and protocol suite. The

next generation scheme and suite (Scheme 2 andSuite 2, respectively) have been designed, as

mentioned above; a prototype implementation is almost complete, and multicast channel estab-

lishment has already been demonstrated. Suite 2 supports multi-party communication, including

routing and establishment of multicast connections and resource sharing [7]. A key difference

between the resource sharing in Scheme 2 and other proposals is that Scheme 2 uses simple,

application-specific hints to share resources among related connections while preserving the
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mathematical guarantees of the Tenet approach [34]. Suite 2 also supports partitioning of network

resources into independent “virtual networks” [35] and supports advance reservation of resources

for future real-time channels [36].

In addition, several improvements have been made to the unicast scheme and suite.

Besides the already mentioned enhancements to the admission control tests, mechanisms for

Dynamic Connection Management (DCM) have been developed to support dynamic adjustment

of traffic and performance parameters and/or routes of existing connections. These mechanisms

have been experimented with in the context of Suite 1 [21]. DCM has also been used and aug-

mented to support fault tolerance and fault recovery [13] [37]. Future work includes implementa-

tion and experimentation with these new algorithms and mechanisms.
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