
¹ Intel and Itanium 2 are registered trademarks of Intel Corporation

² The TPC-C Benchmark is a trademark of the Transaction Processing Performance Council

Large Scale Itanium® 2 Processor OLTP Workload
Characterization and Optimization

Gerrit Saylor
Intel Corporation

Suite 300, 2700 156th Ave NE
Bellevue, WA 98007

(408) 765-8080

gerrit.saylor@intel.com

Badriddine Khessib
Microsoft Corporation
One Microsoft Way

Redmond, WA 98052
(425) 882-8080

bkhessib@microsoft.com

ABSTRACT
Large scale OLTP workloads on modern database servers are well
understood across the industry. Their runtime performance
characterizations serve to drive both server side software features
and processor specific design decisions but are not understood
outside of the primary industry stakeholders. We provide a rare
glimpse into the performance characterizations of processor and
platform targeted software optimizations running on a large-scale
32 processor, Intel®¹ Itanium® 2¹ based, ccNUMA platform.

Categories and Subject Descriptors
B.8.2 [Performance and Reliability]: Performance analysis

C.4 [Performance Of Systems]: Measurement Techniques,
Performance attributes

H.2.4 [Database Management]: Systems – Transaction
processing

General Terms
Measurement, Performance, Experimentation

Keywords
OLTP, Itanium, ccNUMA, software optimization, profile guided
optimization, cache coherency, data partitioning, and performance
characterization

1. INTRODUCTION
On-line transaction processing (OLTP) workloads are widely used
by hardware and software vendors as a basis for design decisions;
they provide a convenient metric for self-evaluation and a method
to target specific server market segments. Despite concerns about
the validity of synthetic benchmarking, customers commonly rely
on OLTP performance to aid purchasing decisions. Not
surprisingly, vendors expend considerable effort in characterizing
OLTP behavior and minimizing performance constraints in order
to maximize system throughput.

These constraints occur in many contexts, but we present a set of

processor level performance indicators and the effects of
processor specific software optimizations. It is a general overview
of the performance constraints of a large-scale, enterprise class,
Itanium2 based, 32-processor server. We briefly describe OLTP
workloads, Itanium 2 processor performance analysis support,
Itanium 2 microarchitectural characterizations under an OLTP
load, and the system under test. We compare the OLTP load on an
optimized software stack against a set of measurements made by
individually disabling the following performance features: profile
guided optimization (PGO), data partitioning, Superlatching, and
large virtual page support. More broadly, these comparisons are
general indicators of the necessity of considering hardware design
in software performance and scalability work, especially with
regard to enterprise class machine architectures, large executables,
and non-linear bus transaction growth under heavy data
contention.

2. PRIOR WORK
Prior work considers multiple facets of OLTP performance
evaluation, but characterizations of servers with more than four
processors are absent in the literature due to the great
expenditures required to assemble large-scale configurations.
General performance evaluation is covered by [1], [3], [6], and
[9]; [6] offers a rich description of OLTP workloads at the
database server level outside the space of synthetic benchmarks
and [1] provides microarchitectural characterizations of loads
including OLTP. In hardware space, coherency effects are
discussed in [2], cache design OLTP performance effects in [10]
and [14], and simultaneous multithreading in [12]. A synopsis of
scalable locking algorithms is covered in [13]. The performance
effects of targeted software design are covered in [11]. And
finally, the compiler effects on OLTP workloads are discussed in
[4] and [15].

3. OLTP WORKLOADS
An OLTP workload, such as the synthetic TPC-C Benchmark²
[16], describes the transactional database support required to
support on-line customer transaction requests. OLTP workloads,
with the exception of an initial ramp-up period, execute in a
homogenous, steady state where the system behavior over short
periods is fully representative of an entire run. This significantly
eases analysis and makes such workloads an attractive study
target. Public benchmark specifications also contribute to
workload longevity and allow long-term analysis relevance.

Transaction processing is characterized at the processor level by
long, per-transaction instruction counts (IPX) of several million
instructions and large instruction cache footprints. Issued
instructions are predominately integer calculations with branch

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Proceedings of the Second International Workshop on Data
Management on New Hardware (DaMoN 2006), June 25, 2006,
Chicago, IL, U.S.A.
Copyright 2006 ACM 1-59593-466-9/06/25…$5.00.

instruction issue quite common: occurring as often as one to two
dozen other instructions. The data references under OLTP
involve random, single row database index lookups and serialized,
chained pointer dereferences of complex, database server data
structures. Overall performance is highly dependant on the cache
and memory hierarchy; row lookups are dependent on memory
latencies, and critical internal data structures must remain cache
resident. At the application level, the high IPX rates reflect the
complexity of implementing fail-safe, transactional support on top
of large-scale memory management, scalable I/O support, mutual
exclusion guarantees, query optimization, and other features. At
the system level very large configurations are required for high-
end results. For example, the top, non-clustered TPC-C Itanium
performance result (as of March 2006) from Hewlett-Packard [5]
required a full terabyte of memory and 1742 disks. The total
system cost (including support and software) is quoted in excess
of $5.9 million.

4. CONFIGURATION AND WORKLOAD
All measured results of Section 5 and Section 6 were collected
with the server configuration and workload described in the
following section. We used a large server configuration in order
to provide a realistic approximation of an enterprise customer
operating under an extremely high transaction load with a very
large database. 32 Intel Itanium 2 processors (1.50GHz with
6MB L3 cache, 256KB L2) were installed on our server which
implemented an 8 node cache coherent NUMA (ccNUMA)
architecture and ran a mainstream, commercial operating system.
256GB of main memory was configured for use under our OLTP
load. The system and OLTP load parameters were configured to
impose a heavy I/O load during data collection in order to sustain
a kernel overhead of 20% to 25% of the total execution time in
each test. Data storage was supplied by a total of 1260 15K rpm
disks, and I/O bandwidth was roughly 960 MB/sec under load.
Table 1 outlines a set of basic system metrics recorded when
establishing a baseline result.

The OLTP load itself was implemented as 2-tier, client-server
configuration modeling a warehouse distribution system. The
database was populated with synthetic data in a TPC-C schema,
and the five TPC-C defined transactions were used to implement a
generalized OLTP workload on a database size in excess of 5
terabytes. A total of approximately 1200 emulated clients issued a
defined ratio of the transactions from 8 dual-processor servers.
The workload parameters remained fixed for each performance
evaluation run. In other words, the I/O requirements per
transaction remained fixed, and the data foot print per transaction
was inversely proportion to total throughput. Audited OLTP
results, on the other hand, require linear scaling of the database
size as throughput increases.

While a configuration of this size is difficult and costly to
maintain given the short mean time to failure (MTTF) of a large
disk array, it is necessary in order to impose the effects of disk
and network I/O on individual processors. These effects, in turn,
impose user to kernel transitions, interrupts, asynchronous
procedure calls, and context switches. Stresses beyond the
processor pipeline and memory bus are exhibited (interrupt
distribution for example), and these require attention to all facets
of system and software design. Looking forward, as multicore
processor usage becomes commonplace, it will not be surprising

to find large-scale OLTP performance work serve as a model for
desktop software development.

Table 1. Basic system metrics on the 32 processor server

Metric Rate

Total user processor time 74.8%

Total system processor time 23.4%

Total system idle time 1.8%

Total I/Os per second 123.2K

Write I/Os per OLTP transactions executed 9.7

Read I/Os per OLTP transactions executed 14.9

5. ITANIUM OLTP CHARACTERIZATION
Native Intel Itanium 2 processor support is available from major
database vendors, and the top Itanium TPC-C results [17] occupy
slots in the top 10 throughput results, demonstrating solid,
scalable database performance capabilities. As such, we present a
processor level characterization of the current state-of-the-art.

5.1.1 Performance Characterization Support
In OLTP work, an Itanium processor is particularly valuable due
to its ability to characterize the workload at the microarchitectural
level, using a robust set of sampled performance events [7]. We
use stall event accounting to describe the causes of those cycles
where instructions fail to be retired by the processor, i.e. stall
cycles. Instruction issue is initiated in-order on the Itanium and a
stalling instruction prevents progress of all subsequent
instructions in the processor pipeline. This is in comparison to
out-of-order execution where multiple, independent instructions
may be in flight or simultaneously experiencing unrelated stall
events. In the in-order case, execution stall cycles may be directly
associated with specific stages and events in the processor
pipeline. The Itanium pipeline is decoupled into a front-end and a
back-end; we break total back-end cycle time down into the
following categories:

1. Front-end stalls (FE): cycles spent by the back-end
waiting for front-end instruction fetch and decode. This
includes instruction cache miss overhead.

2. General register load stalls (GR): cycles typically
resulting from data (not instruction) cache and memory
hierarchy latencies. Could include scoreboard stalls.

3. TLB stalls (TLB): cycles required for virtual to physical
address lookups in the translation look-aside buffer
(TLB) or via the hardware page walker (HPW); may
include L2 to L1 communication stall time.

4. Other stalls (OTH): cycles attributable to register stack
engine misses, branch misprediction, exceptions, or
interrupts. Least significant under OLTP loads.

5. Not stalled (NOT): cycles retiring instructions.

5.1.2 OLTP Characterization
Under an OLTP steady state workload, stall cycle accounting
provides a processor level perspective of the performance

constraints imposed by a system, and Figure 1 and Table 2
illustrate the cycle accounting of a measurement made on the
large-scale, 32 processor system and database described in
Section 4. In this case, the database server implemented a full set
of software performance enhancements which will be used as a
baseline for comparative purposes in Section 6. The cycle
accounting presents the average cycle breakdown across all 32
processors.

Overall, 61% of total time during OLTP steady state on our
system is the result of data load latencies from the cache and
memory hierarchy (GR), but the kernel time impact versus user
time is much more pronounced. Kernel data is much less likely to
be cache resident: typically the effect of remapping kernel defined
I/O management structures in the cache after long lasting (from
the processor perspective) I/O events. Kernel time GR cycles are
also representative of inter-processor synchronization required at
the kernel level to protect shared data structures. Table 3 uses
cache miss statistics and the cache latencies specified in [7]
combined with proprietary platform latencies of our system under
test to roughly estimate the percentage of time spent waiting for
data delivery from different sources in the cache and memory
hierarchy. This estimate actually includes cycle components for
both GR and TLB stall sources since page translations are
ultimately located in the cache and memory hierarchy and are
included in the cache events. In the large-scale server case of this
study, roughly 52% of total stalls are spent waiting for memory,
but the L1 and L2 effects should not be dismissed as these
account for more than 40% of overall data latencies. We explore
approaches to alleviate L3 miss overheads using platform specific
insight in Section 6.

Although the front-end and the TLB stall cycles individually
account for only 9% of the total stall time in Table 2, this remains
noteworthy, as described in Section 6. Very large memory
configurations impose considerable overhead without careful
attention to memory locality concerns, and the results reflect good
behavior of highly optimized code. Large executable image size
and complex code paths also present difficulties when instruction
cache space is not considered. Finally, although time spent freely
executing without stalls is preferred to stall time, this component
may actually reflect superfluous instruction issue, for example, the
unnecessary overhead of prolog and epilog code in very short
functions. Overall, however, the cycle time accounting provides a
precise way to quantify the effects of the optimizations described
in Section 6.

Table 2. The contribution percentages of Figure 1.

Source Kernel User Total

FE 5% 9% 8%

GR 69% 57% 61%

TLB 12% 8% 9%

OTH 5% 6% 5%

NOT 9% 20% 17%

Total 100% 100% 100%

0.000

0.200

0.400

0.600

0.800

1.000

Kernel User Total

NOT

OTH

TLB

GR

FE

Figure 1. Cycle time per optimized OLTP transaction.

Table 3. Estimated cache and memory hierarchy data delivery
cycle breakdown by data source.

Data Source % of GR Cycles

L1 hit latency 20%

L2 hit latency 21%

L3 hit latency 7%

L3 miss latency 52%

Total 100%

6. OPTIMIZATIONS AND RESULTS
A set of performance optimizations were implemented during a
long development process in our DBMS based on processor level
performance feedback. For each optimization we’ll briefly
describe the problem as identified in stall cycle accounting and
then characterize the performance degradation of explicitly
disabling the optimization. We quantify the effects by drawing
attention to specific stall cycle accounting events and reporting
the rates of more specialized performance counters.

Table 4 describes the stall cycle accounting for each optimization,
normalized by the base stall cycles of the fully optimized server.
The table allows one to quickly identify those areas in which the
most significant effects of a performance optimization are
exhibited. For instance, when comparing the base results (ALL)
and the results with disabled profile guided optimization (-PGO),
we see 11% more absolute cycles spent in front-end (FE) stalls,
and a 123% (1.23X) increase in the total cycles per transaction is
exhibited. Note that throughput is approximately the inverse of
the normalized cycle growth, and minor sample-to-sample
processor event data variances exist. In this case, because PGO
directly affects embedded branch prediction and code ordering,
we expect to see the most significant effects associated with the
front-end. Secondary effects, however, are also exhibited across
the other stall sources and are not insignificant and account for
half of the difference, as indicated in the “-PGO” row of Table 4.

Table 4. Back-end cycle accounting differences for disabling
either large page allocation (-LP), superlatches (-SL), profile-
guided optimization (-PGO), client-side data partitioning (-
CS), or server-side data partitioning (-SS). All are normalized
by the fully optimized baseline (ALL) execution cycles. The
relative total cycle time (Total column) is expressed per
general OLTP workload transaction during steady state. See
Section 5.1.1 for stall descriptions.

Stall Sources

Opt. OTH FE TLB NOT GR Total

ALL 5% 8% 9% 17% 61% 100%

-LP 6% 9% 14% 17% 63% 109%

-SL 5% 8% 9% 16% 71% 110%

-PGO 9% 19% 12% 19% 64% 123%

-CS 6% 9% 10% 17% 77% 118%

-SS 5% 8% 10% 18% 65% 106%

6.1 Profile Guided Optimization
6.1.1 Problem Description
As briefly described in Section 5.1.1, when a stall occurs on the
Itanium 2 processor, the entire pipeline stops execution. Our stall
cycle accounting includes a front-end instruction fetch and decode
component, the area where a compiler has direct impact on
performance by optimizing machine code to reduce front-end
stalls. A compiler does this in several ways. First, it must emit
efficient and concise instruction sequences. This limits the
instruction cache footprint, reduces the overall IPX rate, and
reduces secondary instruction footprint effects in the L2 and L3
caches which contain data and instructions, both contending for
space. Second, the compiler should recognize and predict the
favored control path of a workload scenario. This limits the
effects of branch misprediction by enabling Itanium instruction
predication and the use of branch hints. Third, the compiler
should further reduce the IPX rate by using a handbag of
optimization options including inlining and both data and control
speculation.

Profile guided optimization (PGO) uses image instrumentation
and run-time profiling to identify critical paths and allow the
compiler to generate efficient code, reduce the overall instruction
footprint, and therefore reduce the number of fetch and decode
stall cycles. For the system under test, despite the long memory
latencies exhibited on the ccNUMA platform, front-end pressures
remain a principal performance concern. These pressures include
instruction cache pressure, instruction TLB pressure, and branch
misprediction pressure.

6.1.2 Results
Table 4 outlines the effects of PGO optimization in the
comparison of the “ALL” and “-PGO” rows. The data was
collected by running an engine compiled without using PGO.
There is a 1.23X increase in the number of stall cycles and a 20%
loss in transactional throughput. This is primarily reflected in the
FE stall time associated with instruction decoding, along with an
increase in GR stalls resulting from the effects of a larger
instruction footprint resident in the unified L2 cache. These
secondary effects are significant and are primarily the result of

reducing the cache resident instruction working set and freeing up
space for data and page tables.

Table 5 includes some key metrics exhibited at run-time under the
OLTP load by disabling PGO. Code generation is clearly
improved with the help of the profile feedback. Without
feedback, the IPX rate is 1.21X of the fully optimized results, and
the processor cycles required per instruction (CPI) is up 1.08X,
reflecting new constraints imposed on the processor. The
secondary metrics in the table indicate a reduction in correct
branch prediction, and a larger instruction footprint when running
without PGO. Inlining rates are reflected by the number of IA-64
alloc instructions issued during runtime. This instruction
allocates space in the register stack engine (RSE) for general
register use and occurs at the beginning of a function. Without
PGO feedback during optimization, roughly 1.6X the number of
explicit function calls are executed during the workload.

Table 5. Disabled PGO metrics versus full optimization

Basic Metrics Versus Full Opt.

User IPX 1.21X

User CPI 1.08X

Throughput 0.80X

Secondary Metrics

Instructions Between
Mispredicted Branches

0.69X

L3 Instruction References 2.09X

ALLOC Instruction Issue 1.61X

6.2 Data Partitioning
6.2.1 Problem Description
NUMA based architectures exhibit divergent latencies between
local and remote memory as well as local and remote cache-to-
cache (C2C) transfers. Given the long remote latencies on
ccNUMA architectures, we expect that increasing localized data
references will have a significant effect, especially since Table 3
indicates over 50% of data stall time is the result of misses at the
L3 cache level. In this section we show that it is not enough for
the DBMS to be NUMA aware. Huge gains can also be achieved
if the workload is partitioned on the client side. The database
server under test supports locality in two different senses that we
explore: database page buffer allocation locality and internal
DBMS data structure allocation locality.

When a page buffer allocation request is issued, the buffer
manager allocates a buffer from the node where a thread is
running. Since most databases ensure there is only a single copy
of each page in the buffer pool, this scheme breaks if page
references are not co-located on the same node with page
allocation. To reduce cross-node buffer accesses we affinitize
each client to a node. Furthermore, each client is assigned an
exclusive range of warehouses.

Internal DBMS data structures include all non-database page data
used in the database server during query execution. These uses
may include network connection contexts, internal locking
structures, memory management bookkeeping, and query plans.
It’s not unreasonable to expect a majority of references to be to

these data structures. Our DBMS automatically localizes such
structures to local memory when NUMA architectures are
detected.

6.2.2 Results
We collected two sets of results by first modifying the client-side
transaction parameters by increasing the size of the applicable,
per-client warehouse range so that all clients had non-overlapping
ranges. This is a common and allowable practice under TPC-C
specification, and was trivially accomplished since the number of
configured clients matched the number of NUMA nodes on the
database server. We then separately disabled a server side feature
that enabled a specific class of data structure localization. Table 4
demonstrates the effects of disabling client-side and server-side
data partitioning in the “-CS” and “-SS” rows respectively. Not
unexpectedly, there are significant impacts in GR stall time due to
an overall increase in memory latencies when client and server
side partitioning are disabled and local node memory reference
rates decrease compared to remote node reference rates. Table 6
shows the runtime effects: average memory latencies are up by
1.08X for client-side partitioning and 1.05X for server-side
partitioning. There are smaller changes in IPX rates since
transactions are doing essentially the same amount of work, but
the user CPI reductions again reflect the benefits of limiting
remote accesses.

Table 6. Metrics for disabling client-side (CS) and server-side
(SS) data partitioning.

Basic Metrics
-CS vs. Full

Opt.
-SS vs. Full

Opt.

User IPX 0.98X 1.03X

User CPI 1.20X 1.04X

Throughput 0.84X 0.94X

Secondary Metrics

Memory Latency 1.08X 1.05X

6.3 Cache Coherency and Superlatches
6.3.1 Problem Description
In the context of thousands or tens-of-thousands transactions
executed per second, mutual exclusion is an absolute necessity of
database server design. In modern microprocessors, mutual
exclusion is enforced by the use of atomically executed
instructions which determine exclusive cache line ownership. The
instructions often incur a bus transaction due to cache coherency
protocols that contribute to the total C2C traffic. As shown in
Table 3, an estimated 52% of GR stall cycles result from L3 miss
latencies, the manifestation of both memory and C2C transfer
latencies. On platforms where C2C latencies are considerably
higher than memory latencies, cumulative L3 miss latency may be
comprised primarily of C2C transfers. While not all C2C activity
is the result of locking and mutual exclusion (for instance, read-
only, shared copies of global data transferred between processors),
for this workload it is the significant portion. Optimizations to
reduce the impact of C2C latencies can take several forms. The
simplest involves isolating locks or commonly modified data onto
separate cachelines to reduce false sharing, i.e. unnecessary
coherency traffic. Algorithmic design may also be possible to
reduce lock contention, for instance by completely eliminating a

lock or by partitioning data and protecting it by multiple locks
instead of a single lock.

As shown in Figure 2, the top 10 cache lines account for 17% of
the total stall cycles. In this section we will explain why those
cache lines are hot and we will propose a new mechanism
(superlatches) that will reduce their latency. Our analysis showed
that those cache lines are associated with the latches (i.e. multiple
readers, single writer semaphores) that protect the root pages in
the database index b-trees. B-tree data structures lay out index
records in a balanced binary tree, and exhibit little record
modification at the root level. Root page access under latch
control, however, is required for any record lookup. Because
most access to the root pages are read only, latches do not scale
well due to the C2C transfers incurred by exclusively accessing
and maintaining a list of latch owners. Superlatches are a solution
to this problem. The DBMS dynamically looks for high
reference count latches at run time. When a hot latch is detected
and is primarily read only, it is promoted into a superlatch. The
promotion process involves tagging the original latch as a
superlatch and then cloning it into per-processor latch copies.
From this point only the per-processor latch is required for read
operations. For write operations, though, all the local latches
must be acquired and the superlatch demoted to a “normal” latch
again. Obviously this is an expensive operation, but it rarely
happens.

Table 7. Disabled superlatch metrics versus fully optimized
results.

Basic Metrics Versus Full Opt.

User IPX 0.95X

User CPI 1.19X

Throughput 0.91X

Secondary Metrics

C2C Transfers 1.10X

Read & invalidate line 1.52X

Memory latency 0.88X

6.3.2 Results
Table 4 is again the source for comparing of the benefits of
utilizing superlatches. Overall there’s a 1.10X increase in the
total number of stall cycles comparing the “ALL” and the “-SL”
rows. This time is fully attributed to GR time and an increase in
coherency traffic, as expected. Table 7 represents the general
coherency traffic effects; disabling the read only lock
implementations increases the user level CPI by 1.19X, a
reflection of the additional bus transactions and cacheline
invalidations despite along with a decrease in the instruction
complexity in acquiring normal latches. The secondary metrics in
Table 7 reflect this too: read and invalidate line requests are up
tremendously, 1.52X. An interesting side effect from this is that
the average memory latency actually decreases when superlatches
are disabled because the platform exhibits better C2C latencies
versus memory. Although the data latencies are down, total
accesses to and cumulative latencies from the most hotly
contended lines are up. Figure 2 represents this effect. Itanium 2
processor performance counter support provides support for data

address and access latency sampling, and the figure represents the
cumulative latencies of the top 500 cachelines recorded during the
OLTP workload on the machine described in Section 4. Read-
only locking effectively eliminates the high costs associated with
the top 10 cachelines that directly map to the root page latches of
major b-tree structures when read/write locking is used.

0%

5%

10%

15%

20%

25%

30%

35%

0 100 200 300 400 500

Baseline

Superlatches

Figure 2. Cumulative data latencies for the top 500 cachelines
for a baseline (standard) latch versus superlatch
implementations expressed as a percentage of the total L3 miss
latency.

Table 8. Disabled large virtual page allocation metrics

Basic Metrics Versus Full Opt.

User IPX 0.99X

User CPI 1.08X

Throughput 0.91X

Secondary Metrics

L2 Data TLB 2.25X

L2 to L1 Data TLB Transfers 1.01X

L3 Data Read Miss 1.12X

Privileged Level Change 1.94X

Kernel IPX 1.09X

6.4 Large Pages
6.4.1 Problem description
256GB is a huge memory space, especially for OLTP loads which
exhibit random, non-local data references to database rows. The
2nd level DTLB on the Itanium 2 processor contains 128 entries,
covering only a megabyte of virtual space when using 8KB virtual
pages. On the other hand, the processor supports up to a 4GB
virtual page, and most operating systems support large virtual
page allocation (1MB+) in both memory management APIs,
static/global data allocation, and instruction page allocation. For
applications operating in very large memory spaces, depending on
the workload, there can be a large translation overhead which may
be alleviated by taking advantage of larger virtual page support.

6.4.2 Results
Table 8 describes the effects of disabling 16MB large-page
allocations of dynamic data, static data, and instruction pages in
the “ALL” and “-LP” rows. As expected, the largest effects are

from the TLB stall source. A small, secondary effect is exhibited
as GR stalls in Table 4 because fewer page translations are cache
resident. The IPX rate remains constant; CPI is up when standard
page size is used since these references incur higher translation
probability. Since the L1DTLB is a fixed 4KB size, there is little
change in the number of L2 to L1DTLB transfers. L3 data read
misses are up by 1.12X, reflecting space consumption from cache
resident translations. The total number of privileged level
transitions is up 1.94X from explicit page table lookups by the
OS.

7. CONCLUSION
We used cycle time accounting to outline the performance
constraints of a general OLTP workload on a large ccNUMA
platform and describe targeted optimization on the platform.
Obviously, memory and C2C transfer latencies must be taken into
account when designing for performance and scalability, but
surprisingly, the compiler still has a tremendous impact on overall
performance due to the size and complexity of modern database
server executable images. Ultimately the software, both on the
server and client sides along with the compiler, must operate with
knowledge of platform constraints in order to achieve optimal
performance. Although at present the constraints explored above
are exhibited on expensive, enterprise class machines, multi-core
processor availability signals further deepening of cache and
memory hierarchies on commodity parts and platforms. Scalable
database performance on tomorrow’s commodity parts will
require approaches similar to those explored here.

8. ACKNOWLEDGMENTS
Our thanks go to Martin Redmond of Intel for supporting the
machine configuration and necessary data collection in this work.

9. REFERENCES
[1] Barroso, L.A.; Gharachorloo, K.; Bugnion, E. Memory

system characterization of commercial workloads. Computer
Architecture, 1998. Proceedings. The 25th Annual
International Symposium on, 27 June-1 July 1998 Page(s):3 -
14

[2] Black, J.E.; Wright, D.F.; Salgueiro, E.M. Improving the
performance of OLTP workloads on SMP computer systems
by limiting modified cache lines. Workload Characterization,
2003. WWC-6. 2003 IEEE International Workshop on 27
Oct. 2003 Page(s):21 - 29

[3] Hankins, R.; Diep, T.; Annavaram, M.; Hirano, B.; Eri, H.;
Nueckel, H.; Shen, J.P. Scaling and characterizing database
workloads: bridging the gap between research and practice.
Microarchitecture, 2003. MICRO-36. Proceedings. 36th
Annual IEEE/ACM International Symposium on, 2003
Page(s):151 - 162

[4] Hoflehner, Gerolf; Kirkegaard, Knud; Skinner, Rod; Lavery,
Daniel; Lee, Yong-Fong; Li, Wei Compiler Optimizations
for Transaction Processing Workloads on Itanium Linux
Systems. Proceedings of the 37th annual IEEE/ACM
International Symposium on Microarchitecture MICRO 37,
December 2004.

[5] Hewlett-Packard Corporation, HP Integrity TPC-C Results.
Transaction Processing Performance Council website,

reported November 29, 2005.
http://www.tpc.org/results/individual_results/HP/hp_orca1tb
_win64_ex.pdf

[6] Hsu, W.; Smith, A.; Young, H. Characteristics of
Production Database Workloads and the TPC Benchmarks.
IBM Systems Journal 40, No. 3, 2001

[7] Intel Corporation, Intel® Itanium® 2 Processor Reference
Manual For Software Development and Optimization.
ftp://download.intel.com/design/Itanium2/manuals/25111003
.pdf, May 2004, Section 11.

[8] Intel Corporation, Intel Itanium Software Developer’s
Manual, Volume 1, 2, and 3.
http://developer.intel.com/design/Itanium/manuals/iiasdman
ual.htm

[9] Keeton, Kimberly; Patterson, David A.; He, Yong Qiang;
Raphael, Roger C.; Baker, Walter E. Performance
characterization of a Quad Pentium Pro SMP using OLTP
workloads. ACM SIGARCH Computer Architecture News,
Proceedings of the 25th annual international symposium on
Computer architecture ISCA ’98, Vol. 26(3)

[10] Kundu, Partha; Annavaram, Murali; Diep, Trung; Shen, John
A Case for Shared Instruction Cache on Chip
Multiprocessors running OLTP. ACM SIGARCH Computer
Architecture News, Vol. 32, No. 3, June 2004 Pages: 11-18

[11] Kunkel, S.; Armstrong, B.; Vitale, P. System optimization for
OLTP workloads. Micro, IEEE, Volume 19, Issue 3, May-
June 1999, Page(s):56 - 64

[12] Lo, J. L; Barroso, L.A.; Eggars, S.J.; Garachorloo, K.; Levy,
H. M.; Parekh, S. S. An analysis of database workload

performance on simultaneous multithreaded processors.
ACM SIGARCH Computer Architecture News, Proceedings
of the 25th annual international symposium on Computer
architecture ISCA ’98, Vo. 26(3). April 1998.

[13] Mellor-Crummey, John M.; Scott, Michael L. Algorithms for
scalable synchronization on shared-memory
multiprocessors. ACM Transactions on Computer Systems
(TOCS), Vol. 9(1), Feb. 1991.

[14] Nurvitadhi, Eriko; Chalainanont, Nirut; Lu, Shih-Lien
Characterizations of L3 Cache Behavior of
SPECjAppServer2002 and TPC-C. Supercomputing ICS’05,
Proceedings of the 19th annual international conference on.
June 2005.

[15] Ramirez, Alex; Barroso, Luiz André; Gharachorloo,
Kourosh; Cohn, Robert; Larriba-Pey, Josep P.; Lowney,
Geoffrey; Valero, Mateo Code layout optimizations for
transaction processing workloads. ACM SIGARCH
Computer Architecture News , Proceedings of the 28th
annual international symposium on Computer architecture
ISCA '01, Volume 29 Issue 2 May 2001

[16] Transaction Processing Performance Council TPC
Benchmark C, Standard Specification, Revision 5.6.
http://www.tpc.org/tpcc/spec/tpcc_current.pdf, December
2005.

[17] Transaction Processing Performance Council, Top 10 Non-
clustered TPC-C by Performance Version 5 Results.
http://www.tpc.org/tpcc/results/tpcc_perf_results.asp?resultty
pe=noncluster. As of April 2004

