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ABSTRACT
Large scale OLTP workloads on modern database servers are well 
understood across the industry.  Their runtime performance 
characterizations serve to drive both server side software features 
and processor specific design decisions but are not understood 
outside of the primary industry stakeholders.  We provide a rare 
glimpse into the performance characterizations of processor and 
platform targeted software optimizations running on a large-scale 
32 processor, Intel®¹ Itanium® 2¹ based, ccNUMA platform.

Categories and Subject Descriptors
B.8.2 [Performance and Reliability]: Performance analysis

C.4 [Performance Of Systems]: Measurement Techniques, 
Performance attributes

H.2.4 [Database Management]: Systems – Transaction 
processing

General Terms
Measurement, Performance, Experimentation

Keywords
OLTP, Itanium, ccNUMA, software optimization, profile guided 
optimization, cache coherency, data partitioning, and performance
characterization

1. INTRODUCTION
On-line transaction processing (OLTP) workloads are widely used 
by hardware and software vendors as a basis for design decisions; 
they provide a convenient metric for self-evaluation and a method 
to target specific server market segments.  Despite concerns about 
the validity of synthetic benchmarking, customers commonly rely 
on OLTP performance to aid purchasing decisions.  Not 
surprisingly, vendors expend considerable effort in characterizing
OLTP behavior and minimizing performance constraints in order 
to maximize system throughput.

These constraints occur in many contexts, but we present a set of 

processor level performance indicators and the effects of 
processor specific software optimizations.  It is a general overview 
of the performance constraints of a large-scale, enterprise class, 
Itanium2 based, 32-processor server.  We briefly describe OLTP 
workloads, Itanium 2 processor performance analysis support, 
Itanium 2 microarchitectural characterizations under an OLTP 
load, and the system under test. We compare the OLTP load on an 
optimized software stack against a set of measurements made by 
individually disabling the following performance features: profile
guided optimization (PGO), data partitioning, Superlatching, and
large virtual page support.  More broadly, these comparisons are 
general indicators of the necessity of considering hardware design
in software performance and scalability work, especially with
regard to enterprise class machine architectures, large executables, 
and non-linear bus transaction growth under heavy data 
contention.

2. PRIOR WORK
Prior work considers multiple facets of OLTP performance 
evaluation, but characterizations of servers with more than four 
processors are absent in the literature due to the great 
expenditures required to assemble large-scale configurations.  
General performance evaluation is covered by [1], [3], [6], and 
[9]; [6] offers a rich description of OLTP workloads at the 
database server level outside the space of synthetic benchmarks 
and [1] provides microarchitectural characterizations of loads 
including OLTP.  In hardware space, coherency effects are 
discussed in [2], cache design OLTP performance effects in [10]
and [14], and simultaneous multithreading in [12].  A synopsis of
scalable locking algorithms is covered in [13].  The performance 
effects of targeted software design are covered in [11].  And 
finally, the compiler effects on OLTP workloads are discussed in 
[4] and [15].

3. OLTP WORKLOADS
An OLTP workload, such as the synthetic TPC-C Benchmark²
[16], describes the transactional database support required to 
support on-line customer transaction requests. OLTP workloads, 
with the exception of an initial ramp-up period, execute in a 
homogenous, steady state where the system behavior over short 
periods is fully representative of an entire run.  This significantly 
eases analysis and makes such workloads an attractive study 
target.  Public benchmark specifications also contribute to 
workload longevity and allow long-term analysis relevance.

Transaction processing is characterized at the processor level by 
long, per-transaction instruction counts (IPX) of several million 
instructions and large instruction cache footprints.  Issued 
instructions are predominately integer calculations with branch 
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instruction issue quite common: occurring as often as one to two 
dozen other instructions.  The data references under OLTP 
involve random, single row database index lookups and serialized, 
chained pointer dereferences of complex, database server data 
structures.  Overall performance is highly dependant on the cache 
and memory hierarchy; row lookups are dependent on memory 
latencies, and critical internal data structures must remain cache 
resident. At the application level, the high IPX rates reflect the
complexity of implementing fail-safe, transactional support on top 
of large-scale memory management, scalable I/O support, mutual 
exclusion guarantees, query optimization, and other features.  At 
the system level very large configurations are required for high-
end results.  For example, the top, non-clustered TPC-C Itanium
performance result (as of March 2006) from Hewlett-Packard [5]
required a full terabyte of memory and 1742 disks.  The total 
system cost (including support and software) is quoted in excess 
of $5.9 million. 

4. CONFIGURATION AND WORKLOAD
All measured results of Section 5 and Section 6 were collected 
with the server configuration and workload described in the 
following section.  We used a large server configuration in order 
to provide a realistic approximation of an enterprise customer 
operating under an extremely high transaction load with a very 
large database.  32 Intel Itanium 2 processors (1.50GHz with 
6MB L3 cache, 256KB L2) were installed on our server which 
implemented an 8 node cache coherent NUMA (ccNUMA) 
architecture and ran a mainstream, commercial operating system.  
256GB of main memory was configured for use under our OLTP 
load.  The system and OLTP load parameters were configured to 
impose a heavy I/O load during data collection in order to sustain 
a kernel overhead of 20% to 25% of the total execution time in 
each test.  Data storage was supplied by a total of 1260 15K rpm 
disks, and I/O bandwidth was roughly 960 MB/sec under load. 
Table 1 outlines a set of basic system metrics recorded when 
establishing a baseline result.

The OLTP load itself was implemented as 2-tier, client-server 
configuration modeling a warehouse distribution system.  The 
database was populated with synthetic data in a TPC-C schema, 
and the five TPC-C defined transactions were used to implement a 
generalized OLTP workload on a database size in excess of 5 
terabytes.  A total of approximately 1200 emulated clients issued a 
defined ratio of the transactions from 8 dual-processor servers.  
The workload parameters remained fixed for each performance 
evaluation run.  In other words, the I/O requirements per 
transaction remained fixed, and the data foot print per transaction 
was inversely proportion to total throughput.  Audited OLTP 
results, on the other hand, require linear scaling of the database 
size as throughput increases.

While a configuration of this size is difficult and costly to 
maintain given the short mean time to failure (MTTF) of a large 
disk array, it is necessary in order to impose the effects of disk 
and network I/O on individual processors.  These effects, in turn, 
impose user to kernel transitions, interrupts, asynchronous 
procedure calls, and context switches.  Stresses beyond the 
processor pipeline and memory bus are exhibited (interrupt 
distribution for example), and these require attention to all facets 
of system and software design.  Looking forward, as multicore 
processor usage becomes commonplace, it will not be surprising 

to find large-scale OLTP performance work serve as a model for
desktop software development.

Table 1. Basic system metrics on the 32 processor server

Metric Rate

Total user processor time 74.8%

Total system processor time 23.4%

Total system idle time 1.8%

Total I/Os per second 123.2K

Write I/Os per OLTP transactions executed 9.7

Read I/Os per OLTP transactions executed 14.9

5. ITANIUM OLTP CHARACTERIZATION
Native Intel Itanium 2 processor support is available from major 
database vendors, and the top Itanium TPC-C results [17] occupy 
slots in the top 10 throughput results, demonstrating solid, 
scalable database performance capabilities.  As such, we present a 
processor level characterization of the current state-of-the-art.

5.1.1 Performance Characterization Support
In OLTP work, an Itanium processor is particularly valuable due 
to its ability to characterize the workload at the microarchitectural 
level, using a robust set of sampled performance events [7].  We 
use stall event accounting to describe the causes of those cycles
where instructions fail to be retired by the processor, i.e. stall 
cycles.  Instruction issue is initiated in-order on the Itanium and a 
stalling instruction prevents progress of all subsequent 
instructions in the processor pipeline.  This is in comparison to 
out-of-order execution where multiple, independent instructions 
may be in flight or simultaneously experiencing unrelated stall 
events.  In the in-order case, execution stall cycles may be directly 
associated with specific stages and events in the processor 
pipeline.  The Itanium pipeline is decoupled into a front-end and a 
back-end; we break total back-end cycle time down into the 
following categories:

1. Front-end stalls (FE): cycles spent by the back-end 
waiting for front-end instruction fetch and decode.  This 
includes instruction cache miss overhead.

2. General register load stalls (GR): cycles typically 
resulting from data (not instruction) cache and memory 
hierarchy latencies.  Could include scoreboard stalls.

3. TLB stalls (TLB): cycles required for virtual to physical 
address lookups in the translation look-aside buffer
(TLB) or via the hardware page walker (HPW); may 
include L2 to L1 communication stall time.

4. Other stalls (OTH):  cycles attributable to register stack 
engine misses, branch misprediction, exceptions, or 
interrupts.  Least significant under OLTP loads.

5. Not stalled (NOT): cycles retiring instructions.

5.1.2 OLTP Characterization
Under an OLTP steady state workload, stall cycle accounting 
provides a processor level perspective of the performance 



constraints imposed by a system, and Figure 1 and Table 2
illustrate the cycle accounting of a measurement made on the 
large-scale, 32 processor system and database described in 
Section 4.  In this case, the database server implemented a full set 
of software performance enhancements which will be used as a 
baseline for comparative purposes in Section 6.  The cycle 
accounting presents the average cycle breakdown across all 32 
processors.   

Overall, 61% of total time during OLTP steady state on our 
system is the result of data load latencies from the cache and 
memory hierarchy (GR), but the kernel time impact versus user
time is much more pronounced.  Kernel data is much less likely to 
be cache resident: typically the effect of remapping kernel defined 
I/O management structures in the cache after long lasting (from 
the processor perspective) I/O events.  Kernel time GR cycles are 
also representative of inter-processor synchronization required at 
the kernel level to protect shared data structures. Table 3 uses 
cache miss statistics and the cache latencies specified in [7]
combined with proprietary platform latencies of our system under 
test to roughly estimate the percentage of time spent waiting for 
data delivery from different sources in the cache and memory 
hierarchy.  This estimate actually includes cycle components for 
both GR and TLB stall sources since page translations are 
ultimately located in the cache and memory hierarchy and are 
included in the cache events.  In the large-scale server case of this 
study, roughly 52% of total stalls are spent waiting for memory, 
but the L1 and L2 effects should not be dismissed as these 
account for more than 40% of overall data latencies.  We explore 
approaches to alleviate L3 miss overheads using platform specific 
insight in Section 6.

Although the front-end and the TLB stall cycles individually
account for only 9% of the total stall time in Table 2, this remains
noteworthy, as described in Section 6.  Very large memory 
configurations impose considerable overhead without careful 
attention to memory locality concerns, and the results reflect good 
behavior of highly optimized code.  Large executable image size 
and complex code paths also present difficulties when instruction 
cache space is not considered.  Finally, although time spent freely 
executing without stalls is preferred to stall time, this component 
may actually reflect superfluous instruction issue, for example, the 
unnecessary overhead of prolog and epilog code in very short 
functions.  Overall, however, the cycle time accounting provides a 
precise way to quantify the effects of the optimizations described 
in Section 6.

Table 2.  The contribution percentages of Figure 1.

Source Kernel User Total

FE 5% 9% 8%

GR 69% 57% 61%

TLB 12% 8% 9%

OTH 5% 6% 5%

NOT 9% 20% 17%

Total 100% 100% 100%
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Figure 1. Cycle time per optimized OLTP transaction.

Table 3. Estimated cache and memory hierarchy data delivery 
cycle breakdown by data source.

Data Source % of GR Cycles

L1 hit latency 20%

L2 hit latency 21%

L3 hit latency 7%

L3 miss latency 52%

Total 100%

6. OPTIMIZATIONS AND RESULTS
A set of performance optimizations were implemented during a 
long development process in our DBMS based on processor level 
performance feedback.  For each optimization we’ll briefly 
describe the problem as identified in stall cycle accounting and 
then characterize the performance degradation of explicitly 
disabling the optimization.  We quantify the effects by drawing 
attention to specific stall cycle accounting events and reporting 
the rates of more specialized performance counters.

Table 4 describes the stall cycle accounting for each optimization, 
normalized by the base stall cycles of the fully optimized server.   
The table allows one to quickly identify those areas in which the 
most significant effects of a performance optimization are 
exhibited.  For instance, when comparing the base results (ALL)
and the results with disabled profile guided optimization (-PGO), 
we see 11% more absolute cycles spent in front-end (FE) stalls, 
and a 123% (1.23X) increase in the total cycles per transaction is 
exhibited.  Note that throughput is approximately the inverse of 
the normalized cycle growth, and minor sample-to-sample 
processor event data variances exist.  In this case, because PGO 
directly affects embedded branch prediction and code ordering, 
we expect to see the most significant effects associated with the 
front-end.  Secondary effects, however, are also exhibited across 
the other stall sources and are not insignificant and account for 
half of the difference, as indicated in the “-PGO” row of Table 4.



Table 4. Back-end cycle accounting differences for disabling
either large page allocation (-LP), superlatches (-SL), profile-
guided optimization (-PGO), client-side data partitioning (-
CS), or server-side data partitioning (-SS).  All are normalized 
by the fully optimized baseline (ALL) execution cycles. The 
relative total cycle time (Total column) is expressed per 
general OLTP workload transaction during steady state.  See 
Section 5.1.1 for stall descriptions.

Stall Sources

Opt. OTH FE TLB NOT GR Total

ALL 5% 8% 9% 17% 61% 100%

-LP 6% 9% 14% 17% 63% 109%

-SL 5% 8% 9% 16% 71% 110%

-PGO 9% 19% 12% 19% 64% 123%

-CS 6% 9% 10% 17% 77% 118%

-SS 5% 8% 10% 18% 65% 106%

6.1 Profile Guided Optimization
6.1.1 Problem Description
As briefly described in Section 5.1.1, when a stall occurs on the 
Itanium 2 processor, the entire pipeline stops execution.  Our stall 
cycle accounting includes a front-end instruction fetch and decode 
component, the area where a compiler has direct impact on 
performance by optimizing machine code to reduce front-end 
stalls.  A compiler does this in several ways.  First, it must emit 
efficient and concise instruction sequences.  This limits the
instruction cache footprint, reduces the overall IPX rate, and 
reduces secondary instruction footprint effects in the L2 and L3 
caches which contain data and instructions, both contending for 
space.   Second, the compiler should recognize and predict the 
favored control path of a workload scenario.  This limits the 
effects of branch misprediction by enabling Itanium instruction 
predication and the use of branch hints.  Third, the compiler 
should further reduce the IPX rate by using a handbag of 
optimization options including inlining and both data and control 
speculation.  

Profile guided optimization (PGO) uses image instrumentation 
and run-time profiling to identify critical paths and allow the 
compiler to generate efficient code, reduce the overall instruction 
footprint, and therefore reduce the number of fetch and decode 
stall cycles.  For the system under test, despite the long memory 
latencies exhibited on the ccNUMA platform, front-end pressures 
remain a principal performance concern.  These pressures include 
instruction cache pressure, instruction TLB pressure, and branch 
misprediction pressure.

6.1.2 Results
Table 4 outlines the effects of PGO optimization in the 
comparison of the “ALL” and “-PGO” rows.  The data was 
collected by running an engine compiled without using PGO.  
There is a 1.23X increase in the number of stall cycles and a 20% 
loss in transactional throughput.  This is primarily reflected in the 
FE stall time associated with instruction decoding, along with an 
increase in GR stalls resulting from the effects of a larger 
instruction footprint resident in the unified L2 cache.  These 
secondary effects are significant and are primarily the result of 

reducing the cache resident instruction working set and freeing up 
space for data and page tables.

Table 5 includes some key metrics exhibited at run-time under the 
OLTP load by disabling PGO.  Code generation is clearly 
improved with the help of the profile feedback.  Without 
feedback, the IPX rate is 1.21X of the fully optimized results, and 
the processor cycles required per instruction (CPI) is up 1.08X, 
reflecting new constraints imposed on the processor.  The 
secondary metrics in the table indicate a reduction in correct 
branch prediction, and a larger instruction footprint when running 
without PGO.  Inlining rates are reflected by the number of IA-64 
alloc instructions issued during runtime.  This instruction 
allocates space in the register stack engine (RSE) for general 
register use and occurs at the beginning of a function.  Without 
PGO feedback during optimization, roughly 1.6X the number of 
explicit function calls are executed during the workload.  

Table 5. Disabled PGO metrics versus full optimization

Basic Metrics Versus Full Opt.

User IPX 1.21X

User CPI 1.08X

Throughput 0.80X

Secondary Metrics

Instructions Between 
Mispredicted Branches

0.69X

L3 Instruction References 2.09X

ALLOC Instruction Issue 1.61X

6.2 Data Partitioning
6.2.1 Problem Description
NUMA based architectures exhibit divergent latencies between 
local and remote memory as well as local and remote cache-to-
cache (C2C) transfers.  Given the long remote latencies on 
ccNUMA architectures, we expect that increasing localized data 
references will have a significant effect, especially since Table 3
indicates over 50% of data stall time is the result of misses at the 
L3 cache level.  In this section we show that it is not enough for 
the DBMS to be NUMA aware.  Huge gains can also be achieved 
if the workload is partitioned on the client side.  The database 
server under test supports locality in two different senses that we 
explore: database page buffer allocation locality and internal 
DBMS data structure allocation locality.  

When a page buffer allocation request is issued, the buffer 
manager allocates a buffer from the node where a thread is 
running.  Since most databases ensure there is only a single copy 
of each page in the buffer pool, this scheme breaks if page 
references are not co-located on the same node with page 
allocation.  To reduce cross-node buffer accesses we affinitize 
each client to a node.  Furthermore, each client is assigned an 
exclusive range of warehouses.

Internal DBMS data structures include all non-database page data 
used in the database server during query execution.  These uses 
may include network connection contexts, internal locking 
structures, memory management bookkeeping, and query plans.  
It’s not unreasonable to expect a majority of references to be to 



these data structures.  Our DBMS automatically localizes such
structures to local memory when NUMA architectures are
detected.

6.2.2 Results
We collected two sets of results by first modifying the client-side 
transaction parameters by increasing the size of the applicable, 
per-client warehouse range so that all clients had non-overlapping 
ranges.  This is a common and allowable practice under TPC-C 
specification, and was trivially accomplished since the number of 
configured clients matched the number of NUMA nodes on the 
database server.  We then separately disabled a server side feature 
that enabled a specific class of data structure localization.  Table 4
demonstrates the effects of disabling client-side and server-side 
data partitioning in the “-CS” and “-SS” rows respectively.  Not 
unexpectedly, there are significant impacts in GR stall time due to 
an overall increase in memory latencies when client and server 
side partitioning are disabled and local node memory reference 
rates decrease compared to remote node reference rates.  Table 6
shows the runtime effects: average memory latencies are up by 
1.08X for client-side partitioning and 1.05X for server-side 
partitioning.  There are smaller changes in IPX rates since 
transactions are doing essentially the same amount of work, but 
the user CPI reductions again reflect the benefits of limiting 
remote accesses.

Table 6. Metrics for disabling client-side (CS) and server-side 
(SS) data partitioning.

Basic Metrics
-CS vs. Full 

Opt.
-SS vs. Full 

Opt.

User IPX 0.98X 1.03X

User CPI 1.20X 1.04X

Throughput 0.84X 0.94X

Secondary Metrics

Memory Latency 1.08X 1.05X

6.3 Cache Coherency and Superlatches
6.3.1 Problem Description
In the context of thousands or tens-of-thousands transactions 
executed per second, mutual exclusion is an absolute necessity of
database server design.  In modern microprocessors, mutual 
exclusion is enforced by the use of atomically executed 
instructions which determine exclusive cache line ownership.  The 
instructions often incur a bus transaction due to cache coherency 
protocols that contribute to the total C2C traffic.  As shown in 
Table 3, an estimated 52% of GR stall cycles result from L3 miss
latencies, the manifestation of both memory and C2C transfer 
latencies.  On platforms where C2C latencies are considerably 
higher than memory latencies, cumulative L3 miss latency may be 
comprised primarily of C2C transfers.  While not all C2C activity 
is the result of locking and mutual exclusion (for instance, read-
only, shared copies of global data transferred between processors), 
for this workload it is the significant portion.  Optimizations to 
reduce the impact of C2C latencies can take several forms.  The 
simplest involves isolating locks or commonly modified data onto 
separate cachelines to reduce false sharing, i.e. unnecessary 
coherency traffic.  Algorithmic design may also be possible to 
reduce lock contention, for instance by completely eliminating a 

lock or by partitioning data and protecting it by multiple locks 
instead of a single lock.

As shown in Figure 2, the top 10 cache lines account for 17% of 
the total stall cycles.  In this section we will explain why those 
cache lines are hot and we will propose a new mechanism 
(superlatches) that will reduce their latency.   Our analysis showed 
that those cache lines are associated with the latches (i.e. multiple 
readers, single writer semaphores) that protect the root pages in 
the database index b-trees.  B-tree data structures lay out index 
records in a balanced binary tree, and exhibit little record 
modification at the root level.  Root page access under latch 
control, however, is required for any record lookup.  Because
most access to the root pages are read only, latches do not scale 
well due to the C2C transfers incurred by exclusively accessing 
and maintaining a list of latch owners. Superlatches are a solution 
to this problem.  The DBMS dynamically looks for high 
reference count latches at run time.  When a hot latch is detected 
and is primarily read only, it is promoted into a superlatch.  The 
promotion process involves tagging the original latch as a 
superlatch and then cloning it into per-processor latch copies.  
From this point only the per-processor latch is required for read 
operations.  For write operations, though, all the local latches 
must be acquired and the superlatch demoted to a “normal” latch
again. Obviously this is an expensive operation, but it rarely 
happens.

Table 7.  Disabled superlatch metrics versus fully optimized 
results.

Basic Metrics Versus Full Opt.

User IPX 0.95X

User CPI 1.19X

Throughput 0.91X

Secondary Metrics

C2C Transfers 1.10X

Read & invalidate line 1.52X

Memory latency 0.88X

6.3.2 Results
Table 4 is again the source for comparing of the benefits of 
utilizing superlatches.  Overall there’s a 1.10X increase in the 
total number of stall cycles comparing the “ALL” and the “-SL”
rows.  This time is fully attributed to GR time and an increase in 
coherency traffic, as expected.  Table 7 represents the general 
coherency traffic effects; disabling the read only lock 
implementations increases the user level CPI by 1.19X, a 
reflection of the additional bus transactions and cacheline 
invalidations despite along with a decrease in the instruction 
complexity in acquiring normal latches.  The secondary metrics in 
Table 7 reflect this too: read and invalidate line requests are up 
tremendously, 1.52X.  An interesting side effect from this is that 
the average memory latency actually decreases when superlatches
are disabled because the platform exhibits better C2C latencies
versus memory.  Although the data latencies are down, total 
accesses to and cumulative latencies from the most hotly 
contended lines are up.  Figure 2 represents this effect.  Itanium 2
processor performance counter support provides support for data 



address and access latency sampling, and the figure represents the 
cumulative latencies of the top 500 cachelines recorded during the 
OLTP workload on the machine described in Section 4.  Read-
only locking effectively eliminates the high costs associated with 
the top 10 cachelines that directly map to the root page latches of 
major b-tree structures when read/write locking is used.  
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Figure 2.  Cumulative data latencies for the top 500 cachelines 
for a baseline (standard) latch versus superlatch
implementations expressed as a percentage of the total L3 miss 
latency.

Table 8. Disabled large virtual page allocation metrics

Basic Metrics Versus Full Opt.

User IPX 0.99X

User CPI 1.08X

Throughput 0.91X

Secondary Metrics

L2 Data TLB 2.25X

L2 to L1 Data TLB Transfers 1.01X

L3 Data Read Miss 1.12X

Privileged  Level Change 1.94X

Kernel IPX 1.09X

6.4 Large Pages
6.4.1 Problem description
256GB is a huge memory space, especially for OLTP loads which 
exhibit random, non-local data references to database rows.  The 
2nd level DTLB on the Itanium 2 processor contains 128 entries, 
covering only a megabyte of virtual space when using 8KB virtual 
pages.  On the other hand, the processor supports up to a 4GB 
virtual page, and most operating systems support large virtual 
page allocation (1MB+) in both memory management APIs, 
static/global data allocation, and instruction page allocation.  For 
applications operating in very large memory spaces, depending on 
the workload, there can be a large translation overhead which may 
be alleviated by taking advantage of larger virtual page support.

6.4.2 Results
Table 8 describes the effects of disabling 16MB large-page 
allocations of dynamic data, static data, and instruction pages in 
the “ALL” and “-LP” rows.  As expected, the largest effects are 

from the TLB stall source.  A small, secondary effect is exhibited 
as GR stalls in Table 4 because fewer page translations are cache 
resident.  The IPX rate remains constant; CPI is up when standard 
page size is used since these references incur higher translation 
probability.  Since the L1DTLB is a fixed 4KB size, there is little 
change in the number of L2 to L1DTLB transfers.  L3 data read 
misses are up by 1.12X, reflecting space consumption from cache 
resident translations.  The total number of privileged level 
transitions is up 1.94X from explicit page table lookups by the 
OS.

7. CONCLUSION
We used cycle time accounting to outline the performance 
constraints of a general OLTP workload on a large ccNUMA 
platform and describe targeted optimization on the platform.  
Obviously, memory and C2C transfer latencies must be taken into 
account when designing for performance and scalability, but 
surprisingly, the compiler still has a tremendous impact on overall 
performance due to the size and complexity of modern database 
server executable images.  Ultimately the software, both on the 
server and client sides along with the compiler, must operate with 
knowledge of platform constraints in order to achieve optimal 
performance.  Although at present the constraints explored above
are exhibited on expensive, enterprise class machines, multi-core 
processor availability signals further deepening of cache and 
memory hierarchies on commodity parts and platforms.  Scalable 
database performance on tomorrow’s commodity parts will 
require approaches similar to those explored here.
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