Flawed Proof 1:

Aaron Roth

December 16, 2005

Claim 1 2 = 1

Proof: Consider the following identities:

\[
\begin{align*}
10n &= n + \ldots + n \\
100n &= n + \ldots + n \\
\cdot n &= n + \ldots + n
\end{align*}
\]

Note of course that \(n \cdot n = n^2 \), and so differentiating both sides of the last equation with respect to \(n \) gives:

\[
2n = 1 + \ldots + 1 = 1 \cdot n = n
\]

This holds for all \(n \). We may therefore select any non-zero value of \(n \) and divide, giving:

\[
2 = 1
\]

This completes the proof.\(^1\) ■

\(^1\)Special thanks to my high school math teacher Ms. Burbank Shmitt for introducing me to this problem!