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Abstract
This paper describes the open-source Syntax Augmented Machine Translation (SAMT) 1on Hadoop

toolkit—an end-to-end grammar based machine statistical machine translation framework running on the
Hadoop implementation of the MapReduce programming model. We present the underlying method-
ology of the SAMT approach with detailed instructions that describe how to use the toolkit to build
grammar based systems for large scale translation tasks.

1. Introduction

1.1. PSCFG approaches to Machine Translation

Syntax Augmented Machine Translation (SAMT) (Zollmann and Venugopal, 2006) de-
fines a specific parameterization of the probabilistic synchronous context-free grammar
(PSCFG) approach to machine translation. PSCFG approaches take advantage of nonterminal
symbols, as in monolingual parsing, to generalize beyond purely lexical translation. Consider
the example rule below:

@VP → ne @V B1 pas # do not @V B1 : w

representing the discontiguous translation of the French words “ne” and “pas” to “do not”, in
the context of the labeled nonterminal symbol “@VB” (representing the syntactic constituent
type of Verb). These rules seem considerably more complex than weighted word-to-word
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rules (Brown et al., 1993), or phrase-to-phrase rules (Koehn, Och, and Marcu, 2003, Och
and Ney, 2004) but can be viewed as natural extensions to these well established approaches.
An introduction to PSCFG approaches to machine translation can be found in (Chiang and
Knight, 2006).

(Chiang, 2005) describes a procedure to learn PSCFG rules from word-aligned parallel
corpora, using the phrase-pairs from (Koehn, Och, and Marcu, 2003) as a lexical basis for
the grammar. SAMT (Zollmann and Venugopal, 2006) extends the procedure from (Chiang,
2005) to assign labels to nonterminal symbols based on target language phrase structure parse
trees.

In this paper, we describe an end-to-end statistical machine translation framework—
SAMT on Hadoop—to learn and estimate parameters for PSCFG grammars from word-
aligned parallel corpora (training), and perform translation (decoding) with these grammars
under a log-linear translation model (Och and Ney, 2004). While our framework specifically
implements (Chiang, 2005) and (Zollmann and Venugopal, 2006), the training and decoding
algorithms in our toolkit can be easily replaced to experiment with alternative PSCFG pa-
rameterizations like (Galley et al., 2006, Wu, 1997) or alternative decoding approaches such
as (Petrov, Haghighi, and Klein, 2008, Zhang and Gildea, 2008). The algorithms in this
toolkit are implemented upon Hadoop (Cutting and Baldeschwieler, 2007), an open-source
implementation of the MapReduce (Dean and Ghemawat, 2004) framework, which supports
distribution computation on large scale data using clusters of commodity hardware. We report
empirical results that demonstrate the use of the SAMT toolkit on large scale translation tasks.

1.2. The SAMT toolkit

Our toolkit, when used in concert with other open-source components and publicly avail-
able corpora, contains all of the necessary components to build and evaluate grammar based
statistical machine translations systems. The primary components of the toolkit are listed
below:

• A top level push-button script that provides experimental work-flow management and
submits jobs to the underlying Hadoop framework.

• Components to build and estimate parameters for the grammars described in (Chiang,
2005) and (Zollmann and Venugopal, 2006).

• Tools to filter large translation grammars and n-gram language models to build small
sentence specific models that can be easily loaded into memory during decoding.

• A bottom-up dynamic chart parsing decoder based on (Chappelier and Rajman, 1998)
which supports grammars with more than 2 nonterminals symbols per rule. The decoder
outputs n-best lists with optional annotations that facilitate discriminative training.

• An implementation of Minimum Error Rate (MER) training (Och, 2003), extended to
perform feature selection.

The SAMT toolkit requires the following inputs that are easily generated by existing open-
source tools.

• Word aligned parallel corpora. For small resource tasks, word-alignments can be gen-
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erated using the GIZA++ toolkit (Och and Ney, 2003), while large-resource tasks can
be aligned using (Dyer et al., 2008), a parallelized GIZA++ implementation on MapRe-
duce.

• (Zollmann and Venugopal, 2006) requires target language parse trees for each sentence
in the training data. SAMT on Hadoop interfaces to the parser from (Charniak, 2000)
to parse the target side of the parallel corpora on Hadoop.

• N-Gram language models built via the SRILM toolkit (Stolcke, 2002) are used as fea-
tures during decoding.

1.3. SAMT on Hadoop

As discussed in (Dyer et al., 2008), there are significant computational challenges in esti-
mating the component models of a statistical machine translation system from the large paral-
lel and monolingual corpora that yield state-of-the-art translation quality. (Dyer et al., 2008)
apply the MapReduce (Dean and Ghemawat, 2004) programming model to distribute the esti-
mation of word-alignment models (Brown et al., 1993) on a cluster of commodity machines.
The MapReduce model requires that large computational tasks be split into two distinct steps,
a Map step and a Reduce step. In the Map step, input data is processed by parallel tasks gener-
ating intermediate output in the form of key-value pairs. Map tasks tend to be those aspects of
the overall computation that can be performed with access to only a limited, arbitrary portion
of the input data. In the Reduce step, tasks running in parallel take as input intermediate Map
output, with the guarantee that a single Reduce task will receive all intermediate key-value
pairs that share the same key.

The SAMT toolkit is built upon Hadoop (Cutting and Baldeschwieler, 2007), an open-
source implementation of the MapReduce model to distribute the estimation of PSCFG gram-
mars and to perform decoding. Training and decoding are broken up into a series of MapRe-
duce tasks, called phases, which are performed sequentially, transforming input data into a
PSCFG grammar, and using the grammar to translate development and test sentences. Phase
outputs are stored on the Hadoop Distributed File System (HDFS), a highly fault tolerant file
system that is accessible by all cluster machines. Most SAMT phases are run sequentially,
using output from previous phases as input.

1.4. Running SAMT on Hadoop

Detailed instructions for downloading and building the SAMT package are available at
the toolkit’s website2. The top-level script that is used to build PSCFG grammars and per-
form translation in SAMT is mr_runmer.pl; this script is responsible for interpreting user
parameter files, submitting jobs to the Hadoop infrastructure and checking for error codes
from Hadoop jobs. For each phase in the SAMT pipeline, this script generates a Hadoop-on-
Demand script file, which is interpreted by the Hadoop architecture to submit jobs to a cluster

2www.cs.cmu.edu/∼zollmann/samt
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of dedicated machines 3. Each script file refers to pre-compiled Map and Reduce binaries
and specifies the input and output paths for the phase. With respect to a machine transla-
tion workflow, this script is ultimately responsible for building PSCFG grammars, running
MER training and translating unseen test data, and allows output from previous experiments
to initialize new experiments.

The SAMT toolkit is distributed with parameter files in the examples directory that can
be used to re-generate published results from (Zollmann, Venugopal, and Vogel, 2008). In the
remainder of this paper, we describe the SAMT methodology and important user parameters
in our toolkit that impact translation quality and runtime. For a more formal description of the
individual MapReduce phases in the SAMT pipeline, see (Zollmann, Venugopal, and Vogel,
2008).

2. Syntax Augmented Machine Translation

2.1. Phrase and SAMT Rule Extraction

In this section, we describe Syntax Augmented Machine Translation (SAMT) (Zollmann
and Venugopal, 2006), a specific instantiation of the PSCFG formalism that is implemented
in the SAMT on Hadoop toolkit. SAMT extends the purely hierarchical grammar proposed in
(Chiang, 2005) to use nonterminal labels learned from target language parse trees. The inputs
to the SAMT rule extraction procedure are tuples, 〈f, e, Phrases(a, f, e), π〉, where f is a
source sentence, e is a target sentence, a is a word-to-word alignment associating words in
f with words in e, Phrases(a, e, f), are the set of phrase pairs (source and target phrases)
consistent with the alignment a (Koehn, Och, and Marcu, 2003, Och and Ney, 2004), and π
is a phrase structure parse tree of e. SAMT rule extraction associates each phrase pair from
Phrases(a, e, f) with a left-hand-side label, and then applies the rule extraction procedure
from (Chiang, 2005) to generate rules with labeled nonterminal symbols.

Consider the example alignment graph (a word alignment and target language parse tree as
defined in (Galley et al., 2006)) for the example French-to-English sentence in Figure 1. The
phrase extraction method from (Koehn, Och, and Marcu, 2003), extracts all phrase pairs where
no word inside the phrase pair is aligned to a word outside the phrase pair. The following
phrase-pairs, (with source and target sides separated by the “#” symbol) would be extracted
for our example sentence:

il # he
va # go

ne va pas # does not go
ne va pas # not go

il ne va pas # he does not go

3While these scripts assume the Hadoop-on-Demand machine requisitioning model, the toolkit can be easily
modified to submit jobs to a single global machine pool
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Figure 1: Alignment graph (word alignment and target parse tree) for a French-English sentence pair.

Phrase Extraction is the first phase of the SAMT toolkit, annotating each sentence-pair of
the training corpus with a set of phrase pairs extracted from that sentence pair. We use a single
toolkit binary: MapExtractPhrases, run as Hadoop Map step (there is no Reduce step in
this phase). This binary takes a single numberical argument which determines the maximum
length of the initial phrase extracted from word-aligned data. This limit has an impact on the
size and nature of the final grammar. Typically, phrase limits are significantly smaller than the
length of the parallel sentence, preventing very long distance reordering effects from being
captured in the grammar.

The next phase includes rule extraction (Map step, binary MapExtractRules) on a
per-sentence basis, and merging and counting of identical rules (Reduce step, binary
MergeRules). SAMT assigns a left-hand-side (lhs) label to every phrase pair extracted from
the current sentence-pair, based on the corresponding target language parse tree π, forming
initial rules. These labels are assigned based on the constituent spanning the target side word
sequence in π. When the target side of the phrase-pair is spanned by a single constituent in π,
the constituent label is assigned as the lhs for the phrase pair. If the target side of the phrase
is not spanned by a single constituent in π, we use the labels of subsuming, subsumed, and
neighboring constituents in π to assign an extended label of the form C1 + C2, C1/C2, or
C2\C1 (similar in motivation to the labels in (Steedman, 1999)), indicating that the phrase
pair’s target side spans two adjacent syntactic categories (e.g., she went: NP+VB), a partial
syntactic category C1 missing a C2 at the right (e.g., the great: NP/NN), or a partial C1 miss-
ing a C2 at the left (e.g., great wall: DT\NP), respectively. The label assignment is attempted
in the order just described, i.e., assembling labels based on ‘+’ concatenation of two subsumed
constituents is preferred, as smaller constituents tend to be more accurately labeled. If no la-
bel is assignable by either of these three methods, and the parameter ‘-allow_double_plus 1’
is set, we try triple-concatenation to create a label of the form C1 +C2 +C3. If this approach
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do not yield a label or if ‘-allow_double_plus 0’, a default label ‘_FAIL’ is assigned.
An ambiguity arises when unary rules N1 → ... → Nm in the target parse tree are en-

countered, such as the NP→PRN subtree in Figure 1. Depending on the parameter ‘-unary_-
category_handling’, we use the bottom-most label (parameter value ‘bottom’), the top-most
(‘top’), or a combined label Nm : . . . : N1 (‘all’, this is the default).

An alternative method of assigning labels to phrase pairs can be activated by specifying the
parameter ‘-use_only_pos’. In this variant, labeling is performed merely based on the part-of-
speech (POS) tags of the first word POS1 and last word POS2 of the target phrase, resulting in
the label ‘POS1-POS2’. In general, the SAMT approach can take advantage of any labeling
techniques that assigns labels to arbitrary initial phrase pairs. Alternative techniques could
include using source language constituent labels, or automatically induced labels.

The following initial rules would be extracted for our example sentence pair with default
parameter settings:

PRP:NP → il # he
VB → va # go

RB+VB → ne va pas # not go
VP → ne va pas # does not go

S → il ne va pas # he does not go

where the lhs symbol is separated from the source and target words by the → symbol. Based
on these initial rules, we perform the rule generalization procedure from (Chiang, 2005),
replicated below: For each rule:

N → f1 . . . fm # e1 . . . en

for which is an initial rule

M → fi . . . fu # ej . . . ev

where 1 ≤ i < u ≤ m and 1 ≤ j < v ≤ n, a new rule can be generated that has the form:

N → f1 . . . fi−1 Mk fu+1 · · · fm # e1 . . . ej−1 Mk ev+1 . . . en

where k is an index for the nonterminal M that indicates the one-to-one correspondence
between the new M tokens on the two sides (it is not in the space of word indices like
i, j, u, v,m, n). This generalization procedure can be performed recursively to create rules
with multiple nonterminal symbols. The following rules would be extracted from our exam-
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ple sentence:

S → PRP:NP1 ne va pas # PRP:NP1 does not go
S → il ne VB1 pas # he does not VB1
S → il VP1 # he VP1
S → il RB+VB1 # he does RB+VB1
S → PRP:NP1 VP2 # PRP:NP1VP2
S → PRP:NP1 RB+VB2 # PRP:NP1 does RB+VB2

VP → ne VB1 pas # does not VB1
RB+VB → ne VB1 pas # not VB1

VP → RB+VB1 # does RB+VB1

Nonterminal labels provide strong syntactic constraints in the grammar, but the heuristic non-
terminal labels introduce significant sparsity. The importance of these constraints might vary
across language pairs; we would like our model to determine the relative importance of these
labels. Towards accomplishing this goal, for every labeled rule the SAMT grammar, we can
also generate a non-syntactic rule labeled only with generic X nonterminals, like those in
(Chiang, 2005). We introduce an additional feature in the log-linear translation model that
allows the decoder to prefer labeled or unlabeled derivations. To suppress the creation of
generic rules, pass the parameter ‘-generate_generic_variant 0’.

The number of rules generated by this procedure is exponential in the number of initial
phrases pairs, producing a grammar that is impractical for efficient translation. The following
parameters are used to restrict the number of rules extracted per sentence:

• -max_abstraction_count (default: 2): maximum number of abstractions (nonterminal
pairs) per rule.

• -max_source_symbol_count (default: 6): maximum number of symbols (terminals and
nonterminals) on the source side of the rule.

This restricted rule set can be pruned further with the following parameters for MergeRules:
• -allow_consec_nts (default: 1): if set to 0, discards rules that have consecutive nonter-

minals on the source side.
• -allow_src_abstract (default: 1): if 0, discards rules that do not have any source ter-

minal symbols for example: S → NP 1VP2 # NP 2VP1. Setting this parameter to 0,
drastically reduces decoding time.

• -nonlexminfreq, -lexminfreq (defaults: 0): minimum occurrence frequency thresholds
for non-lexical and lexical rules respectively. Increasing these thresholds reduces the
size of the grammar, but often at the cost of translation quality (Zollmann et al., 2008).

• -min_freq_given_src_arg (default: 0): minimum relative frequency of a rule given its
labeled source.

The labeling and extraction procedures defined above identify rules from the input word-
aligned parallel corpora and associated parse trees. The occurrence counts from this extraction
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process are used in estimating relative frequency features for each rule. The estimation of
these features is described in the next section.

2.2. PSCFG Features

Given a source sentence f and a PSCFG grammar, the translation task can be expressed
analogously to monolingual parsing with a CFG. We find the most likely derivation D of the
input source sentence and read off the English translation, identified by composing α from
each rule used in the derivation. This search for the most likely derivation can be defined as:

ê = tgt

(
arg max

D∈Derive(G):src(D)=f

p(D)

)
(1)

where tgt(D) refers to the sequence of target terminal symbols generated by the derivation
D, src(D) refers to the source terminal symbols of D and Derive(G) is the set of sentence
spanning derivations of grammar G. The distribution p over derivations is defined by a log-
linear model. The probability of a derivation D is defined in terms of the rules r that are used
in D:

p(D) =
pLM(tgt(D))θLM

∏
r∈D

∏m
i=1 λi(r)

θi

Z(θLM, θ1, . . . , θm)
(2)

where λi(r) refers to features defined on each rule, pLM is an n-gram language model (LM)
probability distribution over target word sequences, and Z is a normalization constant that
does not need to be computed during search under the arg max search criterion in Equation 1.
The feature weights θLM, θ1, . . . , θm are trained in concert with the language model weight via
Minimum Error Rate (MER) training (Och, 2003). The features λi(r) are statistics estimated
from rule occurrence counts. They represent multiple criteria by which the decoder can judge
the quality of each rule and, by extension, each derivation.

The Reduce step (MergeRules binary) of the Rule Extraction phase is responsible for
generating the following features λi:

• p(r| lhs(r)) : Probability of a rule given its lhs label.
• p(r| src(r)) : Probability of a rule given its source side.
• p(ul(tgt(r))| ul(src(r)) : Probability of the un-labeled target side of the rule given its

un-labeled source side.
where lhs returns the left-hand-side of a rule, src returns the source side γ, tgt returns
the target side α, and ul removes all labels from nonterminal symbols. For example,
ul(NP+AUX1does not go) = X1 does not go. The feature p(ul(tgt(r))| ul(src(r)) is equiv-
alent to the target-given-source relative frequency estimate commonly used in phrase based
systems for purely lexical rules, and the ul function allows us to calculate these estimates for
rules with labeled nonterminal symbols as well.

To estimate the features above, we use maximum likelihood estimation based on counts of
the rules extracted from the training data. For example, p(r| lhs(r)) is estimated by comput-
ing cnt(r)/ cnt(lhs(r)), aggregating counts from all extracted rules. These relative frequency
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features can be efficiently calculated by taking advantage of the MapReduce key sorting mech-
anism.

The output of the Rule Extraction phase is a grammar with a small set of features that
has been learned automatically from the input data. The resulting grammar is large, and for
most translations tasks, cannot be loaded directly into memory for decoding. To avoid this
problem, the SAMT toolkit filters the grammar against a specific test corpus, generating a
sentence specific grammar for each sentence in the corpus. This filtering is performed for
each corpora that we need for translation, typically development, test, and unseen test corpora
are used to train and evaluate machine translation systems.

2.3. Rule and LM Filtering

The Rule Filtering phase (binaries MapSubsampleRules, filterrules_bin) take as input:
the grammar from the Rule Extraction phase, a corpus to filter the grammar against, and
additional model files (such as translation lexica) to generate additional rule features λi. In
the Map step, the grammar is filtered on a per-sentence basis by matching the source words of
each rule to the source words in the sentence we want to translate. In the Reduce step, rules
are augmented with the following features:

• λlex(r) = pw(src(r)| tgt(r)), pw(tgt(r)| src(r)) : lexical weights based on terminal
symbols as in (Koehn, Och, and Marcu, 2003).

• λglue(r) = 1 if the rule is a Glue rule as in (Chiang, 2005) that serves to monotonically
concatenate span translations, 0 otherwise. The Glue rule is manually added to the
grammar as described below.

• λra(r) = 1 for all rules.A rule application count, allowing the model to favor deriva-
tions with more or less rules depending on the weight assigned to this feature.

• λtgt(r): Count of the number of target terminals in r. Allows the model to prefer longer
or shorter translations.

• λlex(r) = 1 if the rule has no nonterminals, 0 otherwise.
• λabs(r) = 1 if the rule has no terminals, 0 otherwise.
• λadj(r) = 1 if the rule has adjacent nonterminals in γ, 0 otherwise. Allows the model

to indicate confidence in derivations that include multiple sequential nonterminals.
• λX(r) = 1 if the rule’s lhs label is X (the hierarchical ‘backoff’ label), 0 otherwise
• λbal(r) = 1 if the ratio of source vs. target terminals in r is significantly different from

the same ratio measured over sentences in the corpus, 0 otherwise.
• λmono(r) = 1 if the rule does not re-order its nonterminals, 0 otherwise.
• λrare(r) = e(1/ cnt(r)): uses the number of times a rule has been seen during training,

cnt(r), to allow penalization of derivations that use rare rules.
The Reduce step of Rule Filtering provides several options to further restrict the grammar and
to augment the additional features. These options can be specified via the top-level parameter:
filter_params. Documentation regarding these additional options can be found in the script:
filter_rules.pl which is used to generate the MapReduce binary filter_rules_bin.
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The Rule Filtering Reduce step also adds the following system rules to each sentence
specific grammar.

• Beginning-of-sentence rule: S→ 〈s〉 # 〈s〉
• Glue rules (Chiang, 2005) for each NT N in the grammar, for example: S→

S1N2 # S1N2
• End-of-sentence rule: S→ S1〈\s〉 # S1〈\s〉
• ‘Unknown’-rules (e.g. NNP→ _UNKNOWN # _UNKNOWN) generating a limited

set of labels for the word ‘_UNKNOWN’, which the decoder substitutes for unknown
source words

The Glue rules (Chiang, 2005) play an important role in grammar based approaches to
MT. These rules serve to simply concatenate translations of consecutive spans during decod-
ing, similar to monotone decoding in a phrase based system (Koehn, Och, and Marcu, 2003).
These Glue operations allow the system to produce translations that violate the syntactic con-
traints encoded in the labels of the grammar—at a cost determined via the MER trained weight
θglue.

Building sentence specific grammars allows us to estimate the parameters and features
of the grammar on large parallel corpora, while still being able to load all relevant rules to
translate particular sentences in a test corpus. We follow this same approach to filter large
n-gram language models in a LM Filtering phase. While the Rule Filtering phase filters rules
based on the source side of the rule, the n-gram LM must be filtered according to the possible
set of target words that can generated by applying the sentence specific grammar. For each
sentence specific grammar, a possible target vocabulary is generated, which is used by the
Rule Filtering binary (LMFilter) to produce sentence specific language models.

3. PSCFG Decoding

The sentence specific grammars and language models built via the MapReduce phases
described above are used in a bottom-up chart parsing decoder to perform the search in Equa-
tion 1. The SAMT tookit provides an implementation of the CYK+ algorithm (Chappelier
and Rajman, 1998), that allows efficient decoding for grammars with more than two non-
terminal symbols. Our decoder integrates n-gram language models during search, using the
Cube Pruning algorithm described in (Chiang, 2007) to mitigate the computational impact of
this feature. Decoding is performed as a MapReduce phase as well; taking as input individual
sentences from the corpora that we want to translate, and translating them in the Map step
(using the FastTranslateChart binary). Each decoder task has access to the sentence specific
models that were built in previous phases on HDFS. The output of the Map step is a n-best
list of candidate translations for the input source sentence. This n-best list is used in MER
training. In order to facilitate MER training, the Reduce step in this phase merges multiple
n-best lists across iterations for the same sentence—as required by MER training. The Map
step takes several parameters that govern translation runtime and translation quality.
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The runtime complexity of our decoder’s search is:

O
(

|f |3
[
|N ||TT |2(n−1)

]K)
(3)

whereK is the maximum number of NT symbols per rule, |f | is the source sentence length,N
is the set of nonterminal labels in the grammar, TT is the set of target language terminals the in
grammar, and n is the order of the n-gram LM. The grammar restriction parameters described
in Section 2.1 have a large significant impact on this runtime (particulary allow_src_abstract,
allow_consec_nts, max_abstraction_count), but this search still requires additional pruning
to produce translations in reasonable time-frames—especially when translating longer sen-
tences. The most important decoder parameters are described below:

• wts: corresponds to the weights θ in the translation model in Equation 2. In practice,
these weights are iteratively trained via MER.

• HistoryLength: (default 2) The number of words considered as LM history length dur-
ing decoding. When set to less than n − 1, when using an n-gram LM, decoding time
is reduced at the expense of search errors, which can reduce translation quality.

• SRIHistoryLength: This value indicates the full history length of the n-gram language
model. When using a reduced HistoryLength, this value is used to recover from search
errors in a LM-driven n-best extraction step similar to (Huang and Chiang, 2007).

• PruningMap: (default: 0-100-5-@_S-200-5): Format: lhs-b-β. Pruning parameters for
Cube Pruning (Chiang, 2007). For each nonterminal label lhs in the grammar for a
source span during decoding, this parameter restricts the number of chart items to b
items, and items that are have cost of at most β greater than the best item. lhs = 0 sets
pruning parameters for all lhs symbols that have not been explicly specified.

• ComboPruningBeamSize : (default 10000) Sets the maximum number of items gener-
ated in each cell via Cube Pruning. Reducing this value reduces decoding time when
PruningMap limits have not caused pruning.

• MaxHypsPerCell: (default 1000000000) Limits the total number of items (partial trans-
lation hypotheses) created for each span during decoding—across items that have dif-
ferent lhs labels (not counting X and S items, which always pass thru this pruning filter).
This value is typically set when using grammars with a large number of lhs labels to
reduce translation runtime, but does introduce additional search error.

• MaxCostDifferencePerCell: (default inf) Max. allowed cost that an item can deviate
from the best item in its chart cell (inf: any cost allowed). Items with lhs X or S always
pass thru this filter. This and the previous parameter are the only paramters that apply
pruning across items with different nonterminal labels.

• MaxCombinationCount: (default 10) Limits the application of automatically learned
PSCFG rules to source spans less than or equal to MaxCombinationCount. Spans of
greater length are composed monotonically with Glue rules. Decoding time is linear in
sentence length once this limit is in effect.
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Track Words (English) LM 1-N grams (N) Dev. Test1 Test2
IWSLT 632K 431,292 (5) IWSLT06 IWSLT07 N/A

67M 67M 102,924,025 (4) MT05 MT06 MT08
230M 230M 273,233,010 (5) MT05 MT06 MT08

Table 1: Training data configurations used to evaluated SAMT on Hadoop. The number of words in the
target text and the number of 1-N grams represented in the complete model are the defining statistics
that characterize the scale of each task. For each LM we also indicate the order of the n-gram model.

3.1. Minimum Error Rate Training

The parameters θ are trained via Minimum Error Rate (MER) training (Och, 2003) to
maximize translation quality according to a user specified automatic translation metric, like
BLEU (Papineni et al., 2002) or NIST (Doddington, 2002). MER training is implemented
in the SAMT toolkit as a MapReduce phase using n-best lists from the decoding phase. The
decoder annotates each candidate translation for a given source sentence with statistics that
allow the MER procedure to evaluate evaluation metric error surfaces. The SAMT implemen-
tation of MER (binary: MER) also performs feature selection, where sparse solutions (θi = 0)
to the optimization procedure are preferred. The following parameters initiate and affect MER
training (to get information about additional parameters, run MER without any input).

• mer: (default false) A top-level parameter to initiate MER training on a development
corpus.

• ScoringMetric: (default IBMBLEU) The automatic evaluation metric that MER opti-
mizes towards.

• DisplayNBestData: (default 1000) The size of the n-best list used for MER training.
• Opti_Epsilon: (default 0.0001) When automatic metric scores differ by less than this

parameter, MER training is terminated. This is also the significance threshold when
testing for sparse solutions.

4. Empirical Results

We demonstrate the SAMT on Hadoop toolkit on three Chinese-to-English translation
tasks, representing a wide range of resource conditions. Each task is described in Table 1.
The IWSLT task is a limited resource, limited domain task, while 67M and 230M (named for
their respective corpora sizes), are corpora used for the annual NIST MT evaluation. For each
task we list the number of words in the target side of the corpus and the number of 1-n grams
in the n-gram LM (estimated from parallel and monolingual data).

For each resource condition, we build SAMT systems using a purely hierarchical grammar
(Hier) (Chiang, 2005) and a syntax augmented grammar (Syntax) from (Zollmann and Venu-
gopal, 2006). All experiments use a 2-gram HistoryLength length the first pass of decoding,
and the full LM history during the second pass n-best list search. These grammars are built
with ‘-allow_consec_nts 0 -allow_src_abstract 0’, and the NIST MT task rules are addition-
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System Dev. BLEU Test1 BLEU Test2 BLEU Grammar Train. (h:m) Test1 (m)
IWSLT Hier 27.0 37.0 N/A 0:12 4

IWSLT Syntax 30.9 37.2 N/A 0:26 12
67M Hier 35.19 32.98 25.88 1:10 17

67M Syntax 35.69 33.12 26.48 2:26 65
230M Hier 36.39 33.74 26.28 4:13 23

230M Syntax 37.11 34.04 26.74 7:21 53

Table 2: Translation quality as measured by IBM-BLEU% (i.e., brevity penalty based on closest refer-
ence length) on each resource track for appropriate evaluation data sets. Systems 67M and 230M are
evaluated in lower-case, while IWSLT is evaluated in mixed case. Training and decoding times given
are based on a cluster of 100 1.9GHz Intel Xeon processors.

ally restricted by ‘-nonlexminfreq 2 -min_freq_given_src_arg α’ where α = 0.005 (Hier) and
α = 0.01 (Syntax). The Syntax based systems also use ‘-MaxHypsPerCell 1000’ to limit the
run time impact of the large number of lhs labels in these grammars.

In Table 2, we report BLEU scores on development and test data as well as run times
to train the respective PSCFG grammars and perform translation with them. Training run
times are reported based on Hadoop MapReduce jobs running on a cluster of 50 dedicated
machines, each running 2 Map or Reduce tasks each. These results demonstrate the ability
for the SAMT toolkit to scale to large resource data conditions. For each of the the three data
conditions we see that training the Syntax grammar takes longer to train as well as translate
with. Translation quality improvements that result from using more parallel and monolingual
data are clear when comparing the 67M and 230M systems. In these experiments, we see small
but consistent improvements from the introduction of SAMT labels, in line with experiments
in (Zollmann et al., 2008). Overall, translation quality results reported here are competitive
with reported results in the literature and constitute a valid baseline for further research.

5. Conclusions and Resources

In this paper we have described the SAMT on Hadoop toolkit, an end-to-end framework
for large scale grammar based statistical machine translation. We discussed the methodology
of the SAMT approach, and described important toolkit parameters that affect translation
quality and run time. Built upon the open-source Hadoop distributed computation framework,
our toolkit is able to scale to build grammars for large scale translation tasks in reasonable time
frames. The toolkit can be easily extended to experiment with alternative grammar extraction
and decoding techniques.

Additional documentation to download and build SAMT on Hadoop is available on the
toolkit website. Example parameter files for the IWSLT task are included in the distribution.
SAMT on Hadoop assumes a fully functional Hadoop installation, using Hadoop-on-Demand
to allocate clusters of dedicated machine for each computational task.

13



PBML ??? JANUARY 2009

Bibliography

Brown, Peter F., Vincent J. Della Pietra, Stephen A. Della Pietra, and Robert L. Mercer. 1993. The
mathematics of statistical machine translation: parameter estimation. Computational Linguistics.

Chappelier, J.C. and M. Rajman. 1998. A generalized CYK algorithm for parsing stochastic CFG. In
Proceedings of Tabulation in Parsing and Deduction (TAPD), pages 133–137, Paris.

Charniak, Eugene. 2000. A maximum entropy-inspired parser. In Proceedings of the Human Lan-
guage Technology Conference of the North American Chapter of the Association for Computational
Linguistics Conference (HLT/NAACL).

Chiang, David. 2005. A hierarchical phrase-based model for statistical machine translation. In Pro-
ceedings of the Annual Meeting of the Association for Compuational Linguistics (ACL).

Chiang, David. 2007. Hierarchical phrase based translation. Computational Linguistics.

Chiang, David and Kevin Knight. 2006. An introduction to synchronous grammars. In Tutorials at the
Annual Meeting of the Association for Compuational Linguistics (ACL).

Cutting, Doug and Eric Baldeschwieler. 2007. Meet Hadoop. In O’Reilly Open Software Convention,
Portland, OR.

Dean, Jeffrey and Sanjay Ghemawat. 2004. Mapreduce: Simplified data process on large cluster. In
Proceedings of Symposium on Operating System Design and Implementation.

Doddington, George. 2002. Automatic evaluation of machine translation quality using n-gram co-
occurrence statistics. In In Proceedings ARPA Workshop on Human Language Technology.

Dyer, Christopher, Aaron Cordova, Alex Mont, and Jimmy Lin. 2008. Fast, easy, and cheap: Construc-
tion of statistical machine translation models with mapreduce. In Proceedings of the Workshop on
Statistical Machine Translation, ACL.

Galley, Michael, Mark Hopkins, Kevin Knight, and Daniel Marcu. 2006. Scalable inferences and train-
ing of context-rich syntax translation models. In Proceedings of the Human Language Technology
Conference of the North American Chapter of the Association for Computational Linguistics Con-
ference (HLT/NAACL).

Huang, Liang and David Chiang. 2007. Forest rescoring: Faster decoding with integrated language
models. In Proceedings of the Annual Meeting of the Association for Compuational Linguistics
(ACL).

Koehn, Philipp, Franz J. Och, and Daniel Marcu. 2003. Statistical phrase-based translation. In Pro-
ceedings of the Human Language Technology Conference of the North American Chapter of the
Association for Computational Linguistics Conference (HLT/NAACL).

Och, Franz J. 2003. Minimum error rate training in statistical machine translation. In Proceedings of
the Annual Meeting of the Association for Compuational Linguistics (ACL).

Och, Franz J. and Hermann Ney. 2003. A systematic comparison of various alignment models. Com-
putational Linguistics.

Och, Franz J. and Hermann Ney. 2004. The alignment template approach to statistical machine transla-
tion. Computational Linguistics.

14



A. Venugopal, A. Zollmann Grammar based statistical MT on Hadoop (1–15)

Papineni, Kishore, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. BLEU: a method for automatic
evaluation of machine translation. In Proceedings of the Annual Meeting of the Association for
Compuational Linguistics (ACL).

Paul, Michael. 2006. Overview of the IWSLT 2006 evaluation campaign. In Proceedings of the Inter-
national Workshop on Spoken Language Translation (IWSLT).

Petrov, Slav, Aria Haghighi, and Dan Klein. 2008. Coarse-to-find syntactic machine translation using
language projections. In Proceedings of the Conference on Empirical Methods in Natural Language
Processing (EMNLP).

Steedman, Mark. 1999. Alternative quantifier scope in CCG. In Proceedings of the Annual Meeting of
the Association for Compuational Linguistics (ACL).

Stolcke, Andreas. 2002. SRILM —an extensible language modeling toolkit. In Proceedings of the
International Conferrence on Spoken Language Processing (ICSLP).

Wu, Dekai. 1997. Stochastic inversion transduction grammars and bilingual parsing of parallel corpora.
Computational Linguistics.

Zhang, Hao and Daniel Gildea. 2008. Efficient multi-pass decoding for synchronous context free
grammars. In Proceedings of the Annual Meeting of the Association for Compuational Linguistics
(ACL).

Zollmann, Andreas and Ashish Venugopal. 2006. Syntax augmented machine translation via chart
parsing. In Proceedings of the Workshop on Statistical Machine Translation, HLT/NAACL, New
York, June.

Zollmann, Andreas, Ashish Venugopal, Franz J. Och, and Jay Ponte. 2008. A systematic comparison of
phrase-based, hierarchical and syntax-augmented statistical MT. In Proceedings of the Conference
on Computational Linguistics (COLING).

Zollmann, Andreas, Ashish Venugopal, and Stephan Vogel. 2008. The CMU Syntax-Augmented Ma-
chine Translation System: SAMT on Hadoop with N-best Alignments. In Proc. of the International
Workshop on Spoken Language Translation, pages 18–25, Hawaii, USA.

15


