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Abstract

This paper considers additive factorial hid-
den Markov models, an extension to HMMs
where the state factors into multiple indepen-
dent chains, and the output is an additive
function of all the hidden states. Although
such models are very powerful, accurate in-
ference is unfortunately difficult: exact in-
ference is not computationally tractable, and
existing approximate inference techniques are
highly susceptible to local optima. In this
paper we propose an alternative inference
method for such models, which exploits their
additive structure by 1) looking at the ob-
served difference signal of the observation,
2) incorporating a “robust” mixture compo-
nent that can account for unmodeled obser-
vations, and 3) constraining the posterior to
allow at most one hidden state to change at a
time. Combining these elements we develop
a convex formulation of approximate infer-
ence that is computationally efficient, has
no issues of local optima, and which per-
forms much better than existing approaches
in practice. The method is motivated by the
problem of energy disaggregation, the task of
taking a whole home electricity signal and de-
composing it into its component appliances;
applied to this task, our algorithm achieves
state-of-the-art performance, and is able to
separate many appliances almost perfectly
using just the total aggregate signal.

1 Introduction and Background

Factorial hidden Markov models (FHMMs) (Ghahra-
mani and Jordan, 1997) are an extension of the basic
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hidden Markov model where several HMMs evolve in-
dependently in parallel, and the observed output is
some joint function of all the hidden states. Due to
their ability to capture complex aggregate signals via
a compact structure, such models have found applica-
tions in areas as speech recognition (Virtanen, 2006),
audio separation (Roweis, 2001), and pitch tacking
(Bach and Jordan, 2005). However, despite their util-
ity, accurate inference is difficult: exact inference re-
quires enumerating an exponential number of states,
and common approximate algorithms, (block) Gibbs
sampling (Kim et al., 2011) or structured mean field
methods (Ghahramani and Jordan, 1997), are highly
susceptible to local optima in the likelihood function.

In this paper we consider the special case of addi-
tive FHMMs, where each HMM emits an (unobserved)
real-valued output, and we observe the sum of these
outputs.1 The key algorithmic contribution of this pa-
per is a method for exploiting the additive structure of
the FHMM to develop an approximate inference proce-
dure that vastly outperforms existing approaches. Our
method considers models that represent both the total
aggregate output and the difference between successive
outputs, and also introduces a “robust” mixture com-
ponent that can represent arbitrary additional signals
(but with an ℓ1-based regularity condition). By con-
straining the posterior to require that only one HMM
change state any any given time, we develop an effi-
cient convex quadratic programming relaxation of the
inference problem. The resulting method works ex-
tremely well in practice, is computationally efficient
(scales roughly linearly in the number of HMMs), can
handle non-IID additive noise, and is free from local
optima in the optimization procedure.

We focus on the application of electrical energy dis-
aggregation, also called non-intrusive load monitoring
(Hart, 1992), the task of taking a whole-home energy
signal and breaking it down into its component appli-

1The original FHMM model (Ghahramani and Jordan,
1997) was of this form, but since many other aggregation
functions have since been used and referred to as FHMMs,
we explicitly denote this case the additive FHMM.
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ances. Studies have shown that just presenting such a
breakdown to users, so that a home owner can see pre-
cisely how much energy is being used by which appli-
ance, can automatically lead to energy-saving behav-
ior (Darby, 2006; Neenan and Robinson, 2009). Given
the large percentage of energy that residential and
commercial buildings consume, enabling such energy-
conserving behavior is a key element to addressing en-
ergy sustainability problems. Although there has been
much work on energy disaggregation (see e.g. (Ziefman
and Roth, 2011) for a recent survey) it has largely fo-
cused simply upon classifying electrical events; early
work looked only at power signals along with finite
state machine models, (Hart, 1992), while later work
has incorporated transient and harmonic information
from very high-frequency sampling (Laughman et al.,
2003; Gupta et al., 2010; Berges et al., 2010). Re-
cent work has begun to look at more complex inference
procedures for the actual disaggregation task, includ-
ing FHMMs (with block Gibbs sampling) (Kim et al.,
2011) and sparse coding methods (Kolter et al., 2010).

In comparison to past work, this paper makes several
contributions from an application standpoint. First,
unlike all past work we are aware of other than (Kim
et al., 2011), we consider the unsupervised setting,
where we do not have a priori knowledge of the ap-
pliances in the home; the inference procedure we de-
velop, however, enables us to use much more complex
device models than this past work. Our method ef-
fectively joins the two prior threads of work in energy
disaggregation: we are able to capture general device
states and capture the information in transient power
signature, using a single unified model. Finally, our
inference method significantly outperforms alternative
inference methods for this task, and for several devices
is able to achieve essentially perfect separation.

2 The Additive Factorial Model

The basic FHMM consists of several independent
HMMs evolving in parallel, with the observation being
a joint function of all hidden states; a graphical model
representation is shown in Figure 1. Exact inference
typically is not tractable in such a model, so approx-
imate inference procedures are needed, such as block
Gibbs sampling or structured mean field methods. In
this paper we are interested in the special case of the
FHMM where the output is an additive function of the
different hidden states as in (Ghahramani and Jordan,
1997). The factors in the additive FHMM are
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Figure 1: The FHMM model.

where N ∈ Z+ is the number of HMMs; mi ∈ Z+

is the number of states in the ith HMM; T ∈ Z+ is

the number of time steps; x
(i)
t ∈ {1, . . . ,mi} denotes

the state of the ith HMM at time t; ȳt ∈ R
n is the

observed aggregate output; µ
(i)
j ∈ R

n is the mean of

the ith HMM for state j; Σ ∈ R
n×n is the observation

variance; φ(i) ∈ [0, 1]mi is the initial state distribution
for ith HMM; and P (i) ∈ [0, 1]mi×mi is the transition
matrix for ith HMM.

Although the additive model is a special case of the
general FHMM, exact inference is still not tractable
in the model, and standard mean-field methods are
susceptible to local optima. To address these issues,
with an eye towards formulating a convex approximate
inference procedure, we propose two additions to the
model that guide the posterior.

2.1 The Difference FHMM Model

In the additive FHMM above, it is natural to con-
sider differences in the output signal: intuitively, in
the case that only one HMM changes state at a given
time, these differences correspond precisely to the state
change of this one HMM and can thus help us to infer
the hidden states. We will formalize this intuition in
the next section, but this has been a common heuris-
tic in algorithms for energy disaggregation: looking for
sharp changes in the power signal and classifying these
as a single device change. We encode these difference
observations directly using a slight modification of the
FHMM, which we refer to as the difference FHMM.

The model is shown in Figure 2; the the x
(i)
t variables

and its factors are the same as for the FHMM, but the
output at time t, denoted ∆ȳt, is given by

∆ȳt|x
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µ
x
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− µ
x
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)
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)

(2)
where we use the same parameters as for the additive
FHMM described earlier (we will hereafter use the ab-
breviation ∆µj,k = µj − µk).

The additive FHMM and the difference FHMM de-
fined here have complementary advantages and disad-
vantages. The additive FHMM captures well the total
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Figure 2: The difference factorial HMM model.

aggregate output of the system, but does not directly
include information about the signal differences. In
contrast the difference FHMM directly encodes these
difference observations, but fails to model the total ag-
gregate output, so that errors in the cumulative sum of
this model can build up over time. Our final inference
procedure will thus ultimately use both models, but
will constrain the posteriors over the hidden states to
agree between them.

2.2 Robust Mixture Components

The Gaussian likelihood term in the FHMM (both the
additive and difference versions) makes the model sen-
sitive to outliers. This is an especially troublesome
problem for the energy disaggregation task, as there
may be new devices or rarely used devices for which
we have no model. We thus introduce a robust ver-
sion of the additive mixture model, which includes a
generic component that can take on arbitrary values,
but which obeys certain regularity conditions. A par-
ticularly suitable choice of regularizer here is (1D) To-
tal Variation (TV) Regularization (Rudin et al., 1992),
a penalty on the ℓ1 norm of the signal differences (or
probabilistically, a Laplace prior on the differences);
this prior encourages the generic mixture component
to take on piece-wise constant values, which intuitively
captures the typical nature of many devices.

To add this generic mixture component to the additive
FHMM model, we extend (1) by introducing a signal
zt ∈ R

n, with the prior

p(z1:T ) =
1

Z(λ, T )
exp

{

−λ

T−1
∑

t=1

‖zt+1 − zt−1‖1

}

(3)

and modify the likelihood of the aggregate output to
be

ȳt|x
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where we scale zt by Σ1/2 because we are using a single
penalty λ for all the dimensions of zt, and we want to
make its units commensurate with those of ȳt.

A similar robust version of the difference FHMM is
possible, and is even simpler in this case, as the model

directly represents the difference signal. We now in-
troduce a signal ∆zt ∈ R

n, with prior

p(∆z1:T ) =
1

Z(λ, T )
exp

{

−λ
T
∑
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}

(5)

and modify the likelihood of ∆ȳt to be
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For intermediate values of λ (i.e.,a λ must be large
enough so that the model does not assign all the output
to zt but small enough so that z1:T is not a constant-
valued), these additional mixture components are able
to explain elements of the signal that are not well mod-
eled by any of the HMMs.

3 Approximate MAP Inference

For the FHMM model and the proposed extensions,
exact inference remains a computationally expensive
procedure: we know of no way to perform exact in-
ference short of enumerating all the states. Thus, in
this section, we focus on methods for approximate in-
ference, and approximate MAP inference in particular.
By exploiting the additive structure of the FHMM, us-
ing both the additive and difference formulations, and
by constraining the posterior, we develop a method
that is computationally efficient, free of local optima,
robust to unknown components in the signal, and
which in practice works much better than existing ap-
proaches.

3.1 Exact MAP Inference

We begin by considering optimization approaches to
exact MAP inference. To define notation, we perform
optimization over the variables

Q =
{

Q(x
(i)
t ) ∈ R

mi , Q(x
(i)
t−1, x

(i)
t ) ∈ R

mi×mi

}

. (7)

These variables (in the exact MAP case) are in-

dicators, so that Q(x
(i)
t )j = 1 ⇔ x

(i)
t = j and

Q(x
(i)
t−1, x

(i)
t )j,k = 1 ⇔ x

(i)
t−1 = j, x

(i)
t = k. In the

following, all summations or constraints over t are
assumed to range from t = 1, . . . , T (or 2, . . . , T ,
as appropriate), over i are assumed to range from
i = 1, . . . , N , and over j, k are assumed to range from
j, k = 1, . . . ,mi. For the robust mixture components,
we also optimize over the variables zt,∆zt ∈ R

n for
the additive and difference formulations respectively.

The first constraint on Q is that it must be locally
consistent and must represent a valid distribution lo-
cally, (i.e., it must lie within the local marginal poly-
tope (Wainwright and Jordan, 2008)) which for this
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problem takes the form
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MAP inference can now be cast as optimizing the log-
likelihood of the model, subject to the constraint that
Q ∈ L and that all the variables in Q take on binary
values (a constraint which we abbreviate Q ∈ {0, 1}).
Due to the Gaussian likelihood term, these problems
take the form of mixed-integer quadratic programs
(MIQPs). For the additive FHMM model, this leads
to the optimization problem

minimize over {Q ∈ L ∩ {0, 1}, z1:T },
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∥
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Similarly, exact MAP inference for the difference
FHMM model is given by the MIQP

minimize over {Q ∈ L ∩ {0, 1}, ∆z2:T },
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Naturally, solving these problems exactly is difficult,
as they involve non-convex integer constraints, and
so some form of relaxation is necessary to obtain a
tractable formulation. A typical method for convert-
ing binary integer problems such as (9) and (10) into
tractable optimization problems is to drop the con-
straint that Q take on integer values, and solve the
resulting, now convex, quadratic programs (this is
usually stated as relaxing that constraint that the
variables be in {0, 1} to the constraint that they be
in [0, 1], but the later is already implied by the lo-
cal marginal polytope in our case). Unfortunately,
the quadratic term in the optimization problems can
make this relaxation perform poorly in practice: this

term typically encourages the Q(x
(i)
t ) variables to take

on non-integral values, and the resulting solution can

have little correspondence to the MAP solution. How-
ever, as we show in the next section, by constraining
the posterior in the difference FHMM formulation, we
can transform (10) to a mixed-integer linear program,
which is much more amenable to convex relaxation.2

3.2 The One-at-a-time Condition and LP
Relaxations

As described intuitively above, a natural condition to
impose upon the posterior distribution over states is
that at most one HMM changes state at any given
time, a requirement we refer to as the one-at-a-time
condition. Indeed, if we consider each HMM in our
model to be a sufficiently discretized approximation
to a continuous time HMM, then this condition holds
with high probability.3 Formally,

Proposition 1. For each HMM i, let P (i) be the dis-
cretization of a continuous time Markov chain with in-
cidence matrix Q(i) ∈ R

mi×mi and discretization in-
terval ∆t ∈ R+. For total time tf ∈ R+, this results in
an FHMM with tf/∆t time steps, and we let A denote
the event that there is some time where two HMMs
change state simultaneously

A = {∃t, i 6= j : x
(i)
t 6= x

(i)
t+1, x

(j)
t 6= x

(j)
t+1}. (11)

Then

p(A) ≤ O(∆t). (12)

The proof and definitions for a continuous time
Markov process are in Appendix A. Note the one-at-
a-time condition is not imposed directly by modifying
the FHMM model (for example, by adding a latent
variable that determines which of the HMMs change);
this would create an undesired dependence between all
the hidden states in subsequent time steps and com-
plicate inference. Rather this condition is imposed as
a constraint on the class of allowable posterior distri-
butions, similar in spirit to the posterior regularization
framework (Ganchev et al., 2010), except that we are
looking only at the inference task rather than a joint
EM task, and the specific constraint we consider here
is of course quite different.

The set of distributions that obey the one-at-a-time
condition can be expressed formally as the constraint

that the off-diagonal elements of Q(x
(1:N)
t−1 , x

(1:N)
t ) sum

2The same can be done in principle for the additive
model, but would require us to introduce exponentially-
many marginal variables.

3We could alternatively use a continuous time FHMM
model, where we assume that observations are generated
(at least) whenever one of HMMs changes state; in this case
the one-at-a-time condition holds with probability one. We
use the discrete-time formulation in this paper for simplic-
ity of the presentation.
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to at most one. That is,
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is non-zero; further, if exactly one of these terms is
non-zero then ∆zt = 0, as we enforce the one-at-a-
time condition over the generic mixture component as
well, and so the quadratic term in (10) can be replaced
by a linear term. Alternatively, if none of the off-
diagonal terms are non-zero then the quadratic term
is just ‖∆ȳt −Σ1/2∆zt‖2Σ−1 , which (together with the
λ‖∆zt‖1 term) can be optimized analytically to give
the Huber loss function
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Thus, exact MAP inference for the difference FHMM
model (for the posterior constrained to the set O) can
be written as the mixed-integer linear program (see
Appendix B for the full derivation)

minimize over {Q ∈ L ∩ O ∩ {0, 1}},
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Dropping the integral constraint in (15) leads to a con-
vex LP. While solutions to the LP need not be integer
valued, in practice they often are: the objective term
and simplex constraints in (15) alone result in sepa-
rable optimization problems that would always have
integer solution, and the only constraints that may
cause non-integral solutions are the consistency terms
in the local marginal polytope, which typically leads
to a very small number of non-integral assignments.

3.3 Joint Approximate Inference

At this point we have two potential models for per-
forming inference which capture different elements of
the signal: the total aggregate output and the dif-
ference signal. To exploit the benefits of each model
we combine these optimization problems (after relax-
ing the integer constraint) into a single joint problem;

Input: ȳ1:T ∈ R
n, aggregate output signal;
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R
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∆ȳt −∆µ

(i)
k,j

∥

∥

∥

2

Σ−1
2

Q(x
(i)
t−1, x

(i)
t )j,k

+
1

2

∑

t

D(Σ
−1/2
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Figure 3: The AFAMAP algorithm.

equivalently, we are performing inference using both
models, but constrain the posterior over the hidden
variables in both cases to agree (note that we don’t
require the zt variables to agree, but rather they act
to make each model robust to outliers). This leads
to the final optimization problem shown in Figure 3,
and we refer to the resulting algorithm as AFAMAP
(Additive Factorial Approximate MAP).

The AFAMAP optimization problem is a convex
quadratic program, so could in principle be solved us-
ing off-the-shelf libraries. However, the total varia-
tion term in particular is poorly handled by general
solvers. Fixing Q, however, we are left with a sim-
ple proximal TV regularization problem, which is effi-
ciently solved using recent methods (Barbero and Sra,
2011). Thus, we employ alternating minimization, us-
ing a generic QP solver (we use the CPLEX solver in
our implementation) to solve the AFAMAP problem
for fixed z1:T , then using the custom solver referenced
above to find z1:T given a fixed Q. A major advan-
tage to the AFAMAP algorithm is that the objective
is jointly convex Q and z1:T and so this procedure will
find the global optimum; if we try to incorporate a
robust mixture component using standard MAP infer-
ence, some variational approximation would be neces-
sary. Also crucial to obtaining good performance is to
properly exploit sparsity: if a transition matrix P (i) is
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Figure 4: Performance varying the number of HMMs
(top), the number of states (middle), and the dimen-
sionality of the output (bottom).

sparse, then we only need to represent those values of

Q(i)(x
(i)
t−1, x

(i)
t ) corresponding to non-zero entries.

Given a (possibly non-integral) solution of the opti-
mization problem, we could potentially refine it using
branch and bound approaches, randomized rounding,
or run exact MAP inference only over the non-integral
states. In practice, however, since the LP objective
encourages integer-valued solutions, simply predicting
the mean output works well, and we use this approach
in AFAMAP.

4 Experiments on Synthetic Data

To measure the effectiveness of our inference algorithm
with respect to different elements of the problem set-
ting, we evaluate the AFAMAP algorithm versus sev-
eral potential competitors on a simple synthetic data

set.4 For state spaces that are small enough we run ex-
act MAP inference. We evaluate the above-mentioned
structured variational mean field (SMF) algorithm
(Ghahramani and Jordan, 1997), which approximates
the FHMM posterior by N decoupled HMMs, and it-
eratively improves the log-likelihood. We also evalu-
ate the AFAMAP algorithm with one of the two com-
ponents removed (i.e., with Σ1 = ∞ or Σ2 = ∞).
While the objective of SMF is slightly different, as it is
computing a full distribution over hidden states rather
than just a MAP estimate, in virtually all the cases we
consider (both here and in the next section) the poste-
rior is sufficiently peaked that the outputs are usually
nearly integer valued. Finally, as a baseline we com-
pare to a method that simply sets the expectation of
all states to the stationary distribution of the Markov
chain. To evaluate the methods, we use the normal-
ized disaggregation error, which directly measures how
well the models recovered the individual HMM out-
puts: given true output y

(i)
t and predicted output ŷ

(i)
t ,

this is defined as
√

√

√

√

√





∑

t,i

∥

∥

∥y
(i)
t − ŷ

(i)
t

∥

∥

∥

2

2



 /





∑

t,i

∥

∥

∥y
(i)
t

∥

∥

∥

2

2
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Figure 4 shows the performance of the different al-
gorithms varying the number of HMMs, states per
HMMs, and the dimensionality of the output. In
all cases AFAMAP outperforms all alternative ap-
proaches (except for exact MAP inference when appli-
cable). The failure of the SMF approach is particularly
evident here: because the algorithm assigns states to
HMMs one at a time, it often will explain some por-
tion of the aggregate signal using the incorrect state;
even using annealing-based approaches (inflating the
variance in early iterations, which we do for all SMF
experiments), it is often difficult to get out of this local
optimum. The AFAMAP algorithm, in contrast, is a
convex method and thus has no problems of local op-
tima; furthermore, training using both the difference
and additive models outperforms either in isolation.

Our second set of experiments evaluates the robust
mixture component. Here we add a random walk

4Experimental details: To create the data, we gener-
ate N “cyclic” HMMs, each with m states, and an n
dimensional output; the initial state distribution is uni-
form over all states, the transition matrix is generated by

P
(i)
j,j ∝ 30, P

(i)

mod(j+1,k+1)+1,j ∝ U [1, 2] and the mean of

each HMM is (µ
(i)
j )ℓ ∼ U [0, 2]. For each HMM we sample

T = 500 time steps, and observe the sum of all the individ-
ual outputs plus Gaussian noise sampled from N (0, 0.01I).
For all experiments we use N = 4, m = 4, and n = 4,
except if one of these parameters is being varied in the ex-
periment. Regularization parameters were set to be on the
order of the parameters of the true model. MATLAB code
for the experiments are included with the paper.



J. Zico Kolter, Tommi Jaakkola

0 0.02 0.04 0.06 0.08 0.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Std Dev. of Random Walk Noise

N
or

m
al

iz
ed

 D
is

ag
gr

eg
at

io
n 

E
rr

or

 

 
AFAMAP
Exact MAP
AFAMAP, Robust
Exact Map, Robust
Prior

Figure 5: Performance of algorithms, with and without
robust mixture component, with random walk noise of
different levels added to the output.

signal to the output, ȳt = ȳt + wt where wt ∼
N (wt−1;σ

2I), and varied σ from 0 to 0.1. Figure
5 shows the performance of “exact” MAP and the
AFAMAP algorithm, with and without the robust
component. This experiment highlights the benefit of
the convex formulation: for the exact MAP formula-
tion, we need some way of including the TV mixture

component, since joint MAP inference over x
(1:N)
1:T and

z1:T is not tractable; in this example, we used simple
alternating maximization which leads to similar issues
as with SMF: initial iterations “lock” the HMM into
bad state guesses, and the resulting optimization opti-
mization over the robust mixture cannot correct this.
Alternatively, the convex objective of AFAMAP is able
to estimate the noise component.

5 Electrical Energy Disaggregation

As mentioned above, the primary application we are
concerned with in this paper is the task of electrical en-
ergy disaggregation, separating a whole-home energy
signal into its component appliances. Although the fo-
cus of this paper is the inference procedure, briefly, the
setup is as follows. Using a high-resolution A/D de-
vice, we logged whole-home aggregate power consump-
tion for two weeks. We also logged power consump-
tion at the circuit level to obtain ground truth labels
(this was used only for validation, and not for train-
ing the models). To reduce the signal size, we used
a greedy variant of total variation regularization to
approximate the power signal as piecewise constant.5

Using the total power signal, we extract all snippets of
data where consumption increases over some thresh-
old then eventually returns to its original level (i.e.,
where some device comes on and turns off); some of
these are indecipherable due to the aggregation, but
especially for short device durations there are occa-
sional snippets of individual devices. We model all
these snippets as “empirical” HMMs (means equal to

5All data is available at http://redd.csail.mit.edu.
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Figure 6: Extracted signatures for nine appliance
types, labeled by device circuit, with time in seconds
on the x-axis and power on the y-axis. Each state
of the device HMM corresponds to a constant-power
segment in the plot, with length equal to that state’s
expected duration.

the observed power output, and transitions probabili-
ties set based upon the amount of time spent at each
power level) and looked at all pairwise probabilities
between them (the probability of one snippet gener-
ating another); using the k-nearest-neighbor graph in-
duced by these probabilities, we ran spectral clustering
to group devices together. This resulted in selecting
nine “prototypical” motifs, shown in Figure 6, that
occurred frequently in the data, and which correspond
very clearly to different devices.

Treating these nine extracted motifs as the HMMs in a
factorial model, we ran the AFAMAP to separate the
appliances in the aggregate power signal over the entire
two week period. For all methods, regularization pa-
rameters (λ and Σ) were fit using one day of the data.
Table 1 shows the performance of the methods for each
device. Because we do not know the true contribution
of the device (just the circuit contribution), we report
precision and recall metrics at the circuit level: re-
call measures what portion of a given circuit’s energy
is correctly classified, while precision measures, of the
energy assigned to a circuit, how much truly belonged
to that circuit. Because there are some portions of the
energy that are correctly left unassigned (because we
have no model of that device), we would not expect to
achieve 100% recall, and we place higher emphasis on
the precision metric.

For all the circuits in the home, AFAMAP vastly out-
performs the SMF method on this problem. In partic-
ular, for five of the nine devices considered, AFAMAP
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Figure 7: True (top), AFAMAP predicted (middle),
and SMF predicted (bottom) breakdown by device for
a short portion of power data.

has a precision in its assignments of more than 90%;
this starts to reach the order of the accuracy in sens-
ing between the two data sources, and a visual inspec-
tion of the signals confirms that AFAMAP is assign-
ing these devices essentially perfectly. AFAMAP does
make errors in the remaining four devices, which upon
inspection is due to the fact that appliances on multi-
ple circuits have signatures very similar to these; the
five devices identified correctly have distinct patterns
that AFAMAP can identify even when they occur in
aggregated form. In contrast, the SMF algorithm es-
sentially fails completely on this task: either the algo-
rithm predicts a great deal of energy incorrectly, or it
assigns very little energy to a circuit.

The difference between the AFAMAP and SMF algo-
rithms is equally striking if we look visually at the
predicted separations of the two methods. Figure 7
looks at a short period of time and shows the true
appliance breakdown along with the predictions of
AFAMAP and SMF. AFAMAP correctly identifies the
washer/dryer, microwave, and kitchen outlets during
this time (with minor errors), and (correctly) uses the

Table 1: Per-circuit performance for AFAMAP and
SMF for two weeks of data. Performance is reported
as precision/recall, and bold entries denote statically
significant better performance on both metrics. More
than one device above can belong to a single circuit.

Circuit AFAMAP SMF
1 Microwave 97.5% / 66.1% 96.8% / 4.1%
2 Bath GFI 82.7% / 70.8% 50.1% / 9.1%
3 Electronics 41.6% / 0.8% 41.4% / 0.3%
4 Kitch. Out. 1 37.5% / 12.9% 10.2% / 47.8%
5 Furnace 91.7% / 70.8% 12.6% / 15.3%
6 Kitch. Out. 2 45.2% / 16.0% 13.3% / 24.8%
7 Wash/Dryer 98.8% / 73.6% 89.3% / 76.7%
Total 87.2% / 60.3% 35.5% / 45.1%

robust TV mixture component to capture the remain-
ing power, for which it does not have a model. In con-
trast, SMF assigns the power to the washer/dryer (al-
most) correctly, but completely fails to properly assign
the other devices. This is indicative of the method’s
tendency to “lock in” to variable assignments; indeed,
we tuned SMF substantially to get even this result: op-
timizing the HMMs in a random order, for example,
typically misses the washer/dryer entirely.

6 Conclusion

Although the additive factorial HMM model has large
representation power, its applicability has likely been
greatly reduced by the difficulty of inference in mod-
els with a substantial number of HMMs. By exploit-
ing the additive structure of the problem and by con-
straining the set of allowed posteriors, the AFAMAP
algorithm can accurately perform inference on such
tasks, opening the door to many more potential ap-
plications. While this paper focused specifically on
the inference problem and the application to energy
disaggregation, it would be natural to investigate the
combination of learning and inference using this pro-
cedure, as well as look at using the method as an ini-
tialization for other inference procedures. From an
application standpoint, many extensions look promis-
ing as well. The unsupervised learning procedure we
described briefly is currently limited to finding devices
with relatively short time scales; but by applying this
approximate inference and iteratively looking at the
“unassigned” portions of energy, it may be possible to
successively build models for more and more devices
in the home. Combined with joint inference and “hard
EM” learning procedures (EM but using MAP infer-
ence) these methods have the potential to achieve the
eventual goal of disaggregating virtually all the appli-
ances in a home without supervision.
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A Proof of Proposition 1

A continuous time Markov chain with m states is de-
fined via an incidence matrix Q ∈ R

m×m. Assuming
the system is is state j at real-valued time t ∈ R+,
we sample a duration from an exponential distribu-
tion with rate −Qjj . We then transition to state
x(t+ dt) = k with probability −Qk,j/Qj,j (which im-
plies that Q must have

∑

k 6=j Qk,j = −Qj,j). That
is

dt|x(t) = j ∼ Exp(−Qj,j)

x(t+ dt) ∼ Mult(q), qk =

{

−Qk,j

Qk,k
k 6= j

0 k = j

(17)

For some time interval ∆t, the discretized transition
matrix, defined as

P (∆t)k,j = p(x(t+∆t) = k|x(t) = j), (18)

is given by
P (∆t) = exp(∆tQ) (19)

where exp(·) here is the matrix exponential defined as

exp(X) =

∞
∑

i=0

1

i!
Xi (20)

We now prove Proposition 1 using these definitions.

Proof. We first note that for r = −minj Qj,j (the
largest rate parameter for the exponential distribu-
tions)

min
j

P (∆t)j,j ≥ 1− r∆t. (21)

This follows immediately from the matrix inequality
exp(X) � I +X which in turn follows from the eigen-
value representation of matrix exponentiation

exp(X) = U exp(Λ)U−1 (22)

where X = UΛU−1 is the eigenvalue decomposition
of X. Since Λ is diagonal, the matrix exponential is
simply the elementwise exponentiation of each entry
on the diagonal, and the matrix inequality follows by
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applying the basic inequality ex ≥ 1+x for each of the
diagonal entries.

Now, for a single time step let A0 be the event that
only zero or one of the N HMMs change state. Us-

ing the bound above with r = p −mini,j Q
(i)
j,j defined

over all the HMMs with ∆t sufficiently small such that
r∆t < 1,

p(A0) ≥ (1− r∆t)N +Nr∆t(1− r∆t)N−1

≥ (1− r∆t)N +Nr∆t(1− r∆t)N

= (1 +Nr∆t)(1− r∆t)N .

(23)

Then probability of the one-at-a-time condition hold-
ing for all tf/∆t time steps is just P (¬A) ≥
P (A0)tf/∆t and

logP (¬A) ≥
tf
∆t

(log(1 +Nr∆t) +N log(1− r∆t)) .

(24)
Using the Taylor approximation

log(1 + x) = x−
1

2
x2 +O(x3) (25)

we have that

log(1 +Nr∆t) +N log(1− r∆t)

= Nr∆t−
1

2
N2r2∆t2 −Nr∆t−

1

2
Nr2∆t2 +O(∆t3)

= −
1

2
(N +N2)r2∆t2 +O(∆t3).

(26)

Combining this with (24) gives

logP (¬A) ≥ −
1

2
tf (N +N2)r2∆t+O(∆t2). (27)

Finally, using the inequality ex ≥ 1 + x, we have

P (A) = 1− P (¬A)

= 1− exp(logP (¬A))

≤ − logP (¬A)

≤
1

2
tf (N +N2)r2∆t+O(∆t2) = O(∆t)

(28)

While we focus on the dependence on ∆t in our presen-
tation of the theorem, it is worth noting that the de-
pendence is also quadratic in the number of HMMs, N .
Thus, for large numbers of concurrent HMMs (where
the probability of changing state is not overly small),
we may still need a fairly high sampling frequency.

B Derivation of the MILP for

Difference FHMMs

Here we present a detailed description of how we ar-
rive at the mixed-integer linear programming formula-
tion to MAP inference in the difference FHMM (15),

by considering the mixed-integer quadratic program
(10) along with the one-at-a-time constraint (13). As
mentioned in the text, enforcing the one-at-a-time con-
straint implies that at most one term in the summation

∑

i,j,k

∆µ
(i)
k,jQ(x

(i)
t−1, x

(i)
t )j,k (29)

is non-zero.

First suppose there is one HMM i at time t with an

off-diagonal entry Q(x
(i)
t−1, x

(i)
t )j,k, j 6= k. Then the

error in approximating ∆ȳt will be

∥

∥

∥
∆ȳt −∆µ

(i)
k,jQ(x

(i)
t−1, x

(i)
t )j,k

∥

∥

∥

2

Σ−1

=
∥

∥

∥∆ȳt −∆µ
(i)
k,j

∥

∥

∥

2

Σ−1
Q(x

(i)
t−1, x

(i)
t )j,k

(30)

since Q(x
(i)
t−1, x

(i)
t )j,k = 1 by the integrality constraint,

and since ∆µ
(i′)
j′,j′ = 0 for all other (diagonal) entries

Q(x
(i′)
t−1, x

(i′)
t )j′,j′ = 1. Furthermore, by the one-at-a-

time condition, the ∆zt = 0 when Q(x
(i)
t−1, x

(i)
t )j,k = 1.

Thus, the quadratic error term

1

2

∥

∥

∥

∥

∥

∥

∆ȳt − Σ−1/2∆zt −
∑

i,j,k

∆µ
(i)
k,jQ(x

(i)
t−1, x

(i)
t )j,k

∥

∥

∥

∥

∥

∥

2

Σ−1

(31)
is equivalent in this case to the linear error term

1

2

∑

i,j,k 6=j

∥

∥

∥∆ȳt −∆µ
(i)
k,j

∥

∥

∥

2

Σ−1

Q(x
(i)
t−1, x

(i)
t )j,k (32)

as desired, and the ℓ1 term ‖∆zt‖1 = 0, so does not
affect the optimization problem.

Alternatively, suppose that no HMM changes state at
time t. Then the error in approximating ∆ȳt is simply

1

2
‖∆ȳt − Σ1/2∆zt‖

2
Σ−1 =

1

2
‖Σ−1/2∆ȳt −∆zt‖

2
2 (33)

This term plus the ℓ1 penalty on ∆zt can be op-
timized analytically, and has the well-known “soft-
thresholding” solution,

argmin
z

1

2
‖y − z‖22 + λ‖z‖1 = sign(y)max{|y| − λ, 0}

(34)
where all the operations in the right hand side are
applied elementwise to the entries of y. This solution
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attains objective value

n
∑

i=1

1

2
(yi − sign(yi)max{|yi| − λ, 0})2 + λmax{yi − λ, 0}

=
n
∑

i=1

min{
1

2
y2i ,

1

2
λ2}+ λmax{|yi| − λ, 0}

=

n
∑

i=1

min

{

1

2
y2i ,max

{

λ|yi| −
λ2

2
,
λ2

2

}}

= D(y, λ)

(35)

Thus, the error (31) is equivalent in this case to the
error term

D(Σ−1/2∆ȳt)



1−
∑

i,j,k 6=j

Q(x
(i)
t−1, x

(i)
t )j,k



 (36)

since
∑

i,j,k 6=j Q(x
(i)
t−1, x

(i)
t )j,k = 0 when no HMMs

change state. Combining (32) and (36) give the MILP
formulation (15) as desired, and have eliminated the
∆zt variable from the optimization problem.


